SKF high-performance miniature ball screws – series SP

High-precision and low-noise miniature ball screws for automation and medical applications

Today’s automated equipment manufacturers need components and systems that offer high reliability, precision and repeatability with low noise. New SKF high-performance miniature ball screws do this while giving manufacturers a wide range of design flexibility.

Enabling precise positioning for miniature applications, these quiet-running miniature ball screws operate at high speeds with low friction and minimal service requirements. Robust and capable of handling high thrust loads, the screws are supplied in a wide range of types and available as customized solutions to meet any application requirement.
Optimized for your application

SKF high-performance miniature ball screws open up new design and performance options for equipment manufacturers. Designers can downsize machines, extend machine reliability, increase speed and output, and reduce noise for a wide range of applications.

Typical applications

- Dental milling machines
- Medical procedure machines
- Mini machine tools
- Engraving machines
- Glass grinding and drilling machines
- Robotic analyzers

Benefits

- Smooth running
- Low noise levels
- High speed capability
- Provides longer service
- Easy nut assembly
- Excellent repeatability
- High positioning accuracy
- Backlash elimination available

Optimized design features

1 New internal design

Balls are picked up smoothly for a new highly optimized ball recirculation path resulting in optimal performance through the new thread profile definition.

- Reduces tangential efforts on the recirculating balls
- Enables up to 2.4 times higher speed limits \((n_d < 120,000) \)
- Reduces noise levels
- Enables smoother running
- Provides much longer service life

2 External interface

The series SP assortment offers easy mounting with a universal, threaded-nose design.

- Interchangeable with most existing standard solutions
- Lubrication hole and wiper housings are standard
- Customized axial play and backlash elimination available
- Same attachment as existing series SD

Benefits

- Smoother
 Lower noise levels suitable for medical, lab and office environments.

- More reliable
 Provides longer service compared to previous generation miniature ball screws.

- Faster
 Up to 7,500 r/min for \(d_0 = 16 \text{mm} \), and up to 15,000 r/min for \(d_0 = 8 \text{mm} \).
Technical data

Table 1: Nominal diameter and lead (right hand)

<table>
<thead>
<tr>
<th>Nominal diameter</th>
<th>Lead (right hand)</th>
<th>Nut</th>
<th>Basic load ratings</th>
<th>Standard play on request</th>
<th>Reduced play on request</th>
<th>Inertia</th>
<th>Grease</th>
<th>Weight</th>
<th>Mass</th>
<th>Inertia</th>
<th>Grease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d<sub>0</sub></td>
<td>P<sub>n</sub></td>
<td>C<sub>s</sub></td>
<td>C<sub>oa</sub></td>
<td>Std play</td>
<td>d<sub>b</sub></td>
<td>–</td>
<td>kg/mm<sup>2</sup></td>
<td>cm<sup>3</sup></td>
<td>kg</td>
<td>kg/m</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>kN</td>
<td>–</td>
<td>mm</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
<td>2.2</td>
<td>2.7</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>1.14</td>
<td>0.1</td>
<td>0.024</td>
<td>0.32</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4.5</td>
<td>5.5</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>4.53</td>
<td>0.3</td>
<td>0.056</td>
<td>0.43</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.6</td>
<td>5.9</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>5.9</td>
<td>0.5</td>
<td>0.070</td>
<td>0.43</td>
<td>4.0</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2.9</td>
<td>4.7</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>2.25</td>
<td>0.1</td>
<td>0.031</td>
<td>0.67</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.9</td>
<td>6.6</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>7.13</td>
<td>0.4</td>
<td>0.070</td>
<td>0.71</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.2</td>
<td>5.4</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>8.02</td>
<td>0.6</td>
<td>0.078</td>
<td>0.71</td>
<td>10.1</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>7.6</td>
<td>10.7</td>
<td>1x2.7</td>
<td>0.07</td>
<td>0.03</td>
<td>24.02</td>
<td>0.9</td>
<td>0.14</td>
<td>1.3</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Table 2: Screw Nut Support bearings

<table>
<thead>
<tr>
<th>Screw</th>
<th>Nut</th>
<th>Without wipers L<sub>1</sub><sub>≥0.3</sub></th>
<th>With wipers L<sub>1</sub></th>
<th>Tightening spanner (FACOM)</th>
<th>Screw length</th>
<th>d<sub>2</sub></th>
<th>d<sub>1</sub></th>
<th>Support bearings</th>
<th>Recommended thrust support bearings</th>
<th>Recommended support pillow blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>d<sub>0</sub> x P<sub>n</sub></td>
<td>D<sub>h</sub></td>
<td>M<sub>1</sub></td>
<td>6g</td>
<td>L</td>
<td>–</td>
<td>mm</td>
<td>–</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8x2.5</td>
<td>17.5</td>
<td>M15×1</td>
<td>23.5</td>
<td>23.5</td>
<td>7.5</td>
<td>126-A35</td>
<td>1000</td>
<td>6.3</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>10x4</td>
<td>23</td>
<td>M18×1</td>
<td>33</td>
<td>33</td>
<td>8</td>
<td>126-A35</td>
<td>1000</td>
<td>7.4</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>10x5</td>
<td>23</td>
<td>M18×1</td>
<td>39.5</td>
<td>–</td>
<td>10</td>
<td>126-A35</td>
<td>2000</td>
<td>7.4</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>12x2</td>
<td>21</td>
<td>M18×1</td>
<td>23.5</td>
<td>23.5</td>
<td>8</td>
<td>126-A35</td>
<td>2000</td>
<td>9.9</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>12x4</td>
<td>25.5</td>
<td>M20×1</td>
<td>34</td>
<td>34</td>
<td>10</td>
<td>126-A35</td>
<td>2000</td>
<td>9.4</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>12x5</td>
<td>25.5</td>
<td>M20×1</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>126-A35</td>
<td>2000</td>
<td>9.3</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>16x5</td>
<td>32.5</td>
<td>M26x1.5</td>
<td>42</td>
<td>42</td>
<td>12</td>
<td>126-A35</td>
<td>2000</td>
<td>12.7</td>
<td>15.2</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1

Fig. 2
Designation system

Complete rolled ball screw assembly

<table>
<thead>
<tr>
<th>Nut type</th>
<th>SP 12x4 R 330/390 G7 L - H + K / WPR STDPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>High performance miniature screw, axial play</td>
</tr>
<tr>
<td>BP</td>
<td>High performance miniature screw, backlash elimination</td>
</tr>
</tbody>
</table>

Nominal diameter x Lead [mm]

Hand
- **R** = Right

Threaded length / Total length [mm]

Lead precision G5, G7, G9

Nut orientation

- Nut threaded nose towards shorter machined end of shaft (S)
- Nut threaded nose towards longer machined end of shaft (L)
- In case there is identical machining at both shaft ends (-)

Machined end combination

See page 36 in the Ball screw catalogue (PUB 6971)

Required lengths for A, S, U (both ends)

See page 36 in the Ball screw catalogue (PUB 6971)

Options

- **WPR** = with wipers
- **NOWPR** = without wipers
- **STDPLAY** = standard axial play
- **REDPLAY** = reduced axial play