Solutions for the machine tool industry

Machined seals and engineered plastic parts

The Power of Knowledge Engineering
Sealing solutions customized
SKF is a supplier of top quality, highly reliable products to the machine tool industry. Customers benefit from SKF’s comprehensive field experience and extensive knowledge in the sealing technology for cutting and forming machine tools.

Optimized sealing solutions
SKF helps customers to achieve their strategic goals:

• Improved safety at work
• Increased productivity
• Reduced effects of contamination
• Increased service life
• Reduced Total Cost of Operation (TCO)
• Reduced operating media and energy consumption
• Increased Mean Time Between Failures (MTBF)

SKF provides the most flexible options for the machine tool industry: sealing solutions and Advanced Engineered Plastic Parts (AEPP) for wet, abrasive and contaminating environments in cutting and forming machines.

Competences
SKF is a leading supplier for standard and custom engineered sealing solutions. Based on many years of experience, especially in the area of cutting and forming machines, SKF is able to support the machine tool industry with

• on-site solution analysis,
• application engineering,
• material development for high speed solutions, increased wear resistance, reduced friction etc.
• integrated solutions consisting of seals and advanced engineered plastic parts,
• just-in-time availability of standard seals and customized sealing solutions,
• moulded seals for higher volume orders.

Customers benefit from flexibility and short delivery times for customized seals. SKF machined seals are always made from high-performance materials and cover the following product groups:

• Hydraulic and pneumatic sealing systems
• Sealing solutions for rotary distributors and joints
• Radial shaft seals
• V-rings
• Gaskets for flange connections
• Static seals and O-rings
• Advanced engineered plastic parts

Finding the most suitable sealing solution is a complex and rewarding task. SKF’s experience shows that a sealing system can always be optimized.
The right sealing solution for extreme conditions

Whenever reduced maintenance costs, increased productivity or process reliability are important – SKF is there with improved machined sealing solutions for the machine tool industry.

The following points are essential when selecting the right seal for the harsh operating conditions of the machine tool industry.

Operating environment

The purpose of sealing is to keep operating fluids or lubricants in the system and/or contaminants out.

Aggressive contamination can be a concern. Abrasive particles like chips or material dust, cooling fluids or emulsions may affect the sealed machine part.

Fluids

Fluids affect the sealing system in many ways. The sealing material has to be compatible with internal or external fluids. Those could be lubricants, coolants, operating media in a hydraulic system, but also auxiliary cleaning or assembly media.

Operating parameters

Impact of type, speed and duration of the motion on the sealing lip is critical. Motion can be linear, rotating or pivoting, continuous or discontinuous. Operating pressures as well as possible system and application related pressure peaks are also to be considered.

Elevated temperatures may also affect the seal and its performance. In most cases, media temperature and motion speed determine the actual temperature at the sealing lip, but an elevated ambient temperature can also affect the performance of the seal.

Machine design

The operating fluid determines the seal selection in rotating as well as in reciprocating equipment.

In rotating equipment, the machine can be lubricated with grease, oil, or oil-air. In a reciprocating application, the operating fluid can be hydraulic oil, water-based fluid or compressed air.

Shaft misalignment must be considered when choosing the sealing lip design for rotating applications. Shaft-To-Bore Misalignment (STBM) and Dynamic Run-Out (DRO) are also relevant. For large sized reciprocating machines, the rod misalignment may also be of concern. The structural condition of the seal’s counterface strongly affects the sealing performance.

Housing design and its structural condition determine the seal design. Open housings require a self-retaining sealing solution. Closed housings provide a perfect fit for elastomeric seals. SKF supplies customized seals for standard and non-standard housing dimensions.

Improvement potentials

Finally, the most important indicators for possible improvements are the existing seal performance and the reasons for seal failure and/or necessary seal replacement.

The seal’s performance can affect productivity, process reliability, MTBF and maintenance schedules. Optimizing a sealing solution can be a complex task. SKF applies its experience to customers’ specific operating environment to jointly identify system optimization and cost saving potentials (in terms of TCO) generated by an optimized sealing solution.
Machined seals concept

SKF is a leading player in the global custom-made machined seals market, specializing in complete sealing services for cutting and forming machine tools. SKF serves many countries worldwide with its global sales network.

Standard seals
- Seals in standard dimensions
- Extensive range of materials
- On-time availability

Customized seals
- Standard seal profiles modified to specific requirements
- Virtually unlimited dimensions
- Extensive range of materials
- On-time availability (approx. 24 hours)

Custom engineered seals
- Application engineering service
- Customer related designed sealing solutions
- Virtually unlimited dimensions and profiles
- Extensive range of materials
- Short delivery time

Due to the flexible production process, SKF can supply standard and special seals in customized dimensions and high performance sealing materials up to 4 000 mm in diameter as one piece. Large seals with diameters up to 10 000 mm and above are assembled using a special welding technique.

SKF’s machined seals competence centers provide global availability with truly local service, being very close to the end customer. In some selected locations you can also find:

Advanced engineered plastic parts
Turned, milled and moulded parts, made of high performance plastic materials.

Other business and services
Maintenance and repair of hydraulic and pneumatic cylinders; gaskets and products manufactured using water-jet cutting technology.
Machine tools

Cutting machines
Machining centres
Transfer
Turning
Drilling
Boring
Milling
Grinding
Honing
Lapping
Gear cutting
Sawing

Forming machines
Presses
Hammers
Bending
Folding
Shearing
Punching
Notching
Forging
Wire working
Seals for rotary distributors

Rotary distributors or rotary joints regularly rotate at low speeds compared to spindles and have to operate at high pressures (up to 300 bar).

Dynamic seals for applications with rotating or pivoting movements within a rotary distributor have to handle different fluid pressure levels. To ensure positioning accuracy, it is very important to have sealing solutions available with low friction and minimum stick-slip tendency. The seals have to cope with a wide range of media (hydraulic oil, water, air, coolants, lubricants, etc.) and have to provide high wear resistance in order to achieve a long service life.

In one particular case, a modified rotary seal made of hard grade XS-ECOPUR outperformed the previously used PTFE-solution in wear resistance and sealing effectiveness. This resulted in a longer service life (more than 100 000 load cycles, compared to 60 000 previously experienced with a PTFE-solution). As shown below, only a very slight tendency to gap extrusion occurred. The achieved low friction at high pressure level resulted in a low temperature generation. In addition, the material is chemically resistant to all relevant fluids.

Seals for rotary tables

Rotary tables or indexing tables have to offer short cycle times and high precision indexing, even when transporting heavy loads. In that application, the seals have to provide low friction and low wear and have to be available in diameters exceeding 600 mm.

For this application, chemical resistance against coolants and lubricants is a must. SKF’s special G-ECOPUR Polyurethane used as a base material for machined large diameter seals (up to 4 000 mm in one piece) provides excellent chemical and wear resistance as well as low friction.

SKF specially designed sealing solutions meet all the customer’s requirements of reducing machine downtime and minimizing TCO.
Forming

Seal for forging presses
Dismantling large scale machinery for the replacement of seals is time consuming and related downtime costs are considerable.

In one case, a standard rubber fabric seal at the main cylinder had to be replaced. SKF has developed a procedure that allows the welding of large diameter polyurethane seals on site maintaining the full sealing capacity. For SKF, installing replacement seals is a common process that allows customers to keep production downtime to an absolute minimum.

Seals for ceramic powder presses
In the press technology sector, there are presses, which use pressures up to 3 000 bar and more in order to reach necessary forming forces with compact unit dimensions. Hot and cold iso-static presses and presses for sheet metal forming are just two common examples.

In one special case, SKF was challenged with the deflection of the cylinder, combined with the changing properties of the sealing material at ultra high pressure. Based on a Finite Element Analysis (FEA) for design and seal geometry optimisation, a sealing solution for these challenging conditions was introduced, which greatly increased the number of pressing cycles.

Seals for wood chipboard presses
To maintain a continuous operating process without unplanned downtimes, each machine component, even a simple seal, has to meet the highest performance expectations.

In this particular case, a customer required a sealing solution for a wood chipboard press. The hydraulic system of the press was operated with a water based fluid (HFA–E), which caused a lack of lubrication at the sealing surface. Combined with heavy loads at the sealing surface, these conditions may have led to extreme wear and reduced lifetime of the seals. By introducing the appropriate sealing profile, together with the high performance, wear resistant sealing material G–ECOPUR, SKF increased the lifespan of the seal from an average of 90 days to more than one year.
Optimized for your system performance

With more than 100 years of experience, SKF provides advanced sealing solutions and meets the requirements of applications and processes for the cutting and forming machine tool industry. This focus has led to the development of new, reliable products and materials specifically engineered, designed and optimized for your system performance.

After a detailed study of the customer’s operation and needs, SKF will check its comprehensive list of standard products to find a suitable solution; alternatively, SKF can engineer customized solutions.

The unique SKF total service approach provides a solution with considerable advantages over conventional arrangements. With the SKF SEAL JET system, SKF supplies seals in a wide range of different sizes and offers cost-effective sealing solutions on demand – without any tooling costs or delays.
Standard machined seal profiles

Wipers
- A01-A
- A01-B
- A02-A
- A02-B
- A02-I
- A03-A
- A04-A
- A05-A
- A05-B
- A05-I
- A06-A
- A07-A
- A08-A
- A08-B
- A09-A
- A11-A
- A12-A
- A13-A
- A25-F
- A26-F
- A27-F

Piston seals
- K01-P
- K01-PE
- K01-R
- K01-RE
- K02-P
- K02-PD
- K02-R
- K02-RD
- K03-P
- K03-F
- K04-P
- K04-PD
- K05-P
- K05-R
- K06-P
- K06-R
- K07-P
- K07-F
- K07-E
- K08-P
- K08-DS
- K08-Q
- K09-N
- K09-I
- K1012-T
- K1012-M
- K1315-T
- K16-A
- K16-B
- K17-P
- K17-R
- K19-F
- K20-R
- K21-P
- K22-P
- K22-R
- K23-N
- K23-H
- K23-D
- K23-F
- K24-P
- K25-P
- K35-P

Rod seals
- S01-P
- S01-R
- S02-P
- S02-PD
- S02-R
- S02-RO
- S02-S
- S02-T
- S03-P
- S03-ES
- S04-F
- S04-PD
- S05-P
- S05-ES
- S06-P
- S06-R
- S07-P
- S07-F
- S07-E
- S08-P
- S08-PE
- S08-R
- S09-E
- S09-Q
- S09-I
- S10-R
- S1315-T
- S16-A
- S16-B
- S17-P
- S17-R
- S18-P
- S18-R
- S19-F
- S20-R
- S21-P
- S22-P
- S24-P
- S2527-P
- S2528-P
- S2531-P
- S2532-P
- S2533-P
- S2534-P
- S2535-P

Rotary seals
- R01-P
- R01-R
- R01-AS
- R01-F
- R01-FS
- R02-P
- R02-AS
- R02-FS
- R03-P
- R03-R
- R04-A
- R05-A
- R06-R
- R07-P
- R08-R
- R08-A
- R09-F
- R09-FS
- R10-F
- R10-FS
- R11-F
- R11-R
- R12-F
- R12-R
- R13
- R14
- R14-R
- R15-P
- R16

Guide and backup rings
- F01
- F02
- F03
- F04
- F05
- F06
- F07
- F08
- ST08
- ST09
- ST10
- ST11
- ST12
- ST13

O-rings and static seals
- R13
- R14
- R15-P
- R16
- S20-R
- S35-P
- K20-R
- K35-P
- R12-F
- R20-P
- R35-A
Advanced engineered plastic parts

High performance plastic materials work at temperatures above +150 °C without any substantial change to their mechanical properties. For the machine tools industry, SKF offers machined plastic products made of these high performance polymers as well as standard thermoplastics.

SKF produces all seals and advanced engineered plastic parts as a single item, in small quantities, or larger quantities up to a couple of thousand, using machining or milling techniques.

So, whether prototypes or weight reduction or high performance products are needed, please contact our application engineers, who can advise you on the best possible solution for your application.

Typical materials for AEPP
- Polyethylene with high or ultra high molecular weight (HMWPE, UHMWPE)
- Polyurethane (TPU, CPU)
- Polyoxymethylene (POM)
- Polyamide (PA)
- Polyethylene terephthalate (PETP)
- Polycarbonate (PC)
- Elastomers (NBR, H-NBR, FPM, FKM, EPDM, MVO)
- Polyvinylidene fluoride (PVDF)
- Polyphenylenesulfide (PPS)
- Polytetrafluoroethylene (PTFE)
- Polyetheretherketone (PEEK)
- Polysulphone (PSU)
- Polyetherimide (PEI)
- Polyphenylensulphone (PPSU)
- Polyamide Imide (PAI)
- Polyimide (PI)
- Polybenzimidazole (PBI)

Clamping unit, SKF Ecomid
Gripper parts, XH-ECOPUR
Special parts according to customer design specifications, SKF Ecopaek
Sliding parts, SKF Ecowear
Sliding elements, SKF Ecomid
Lid module, SKF Ecorubber-3 + SKF Ecaflas
Sealing materials

Polyurethanes

SKF has developed many high performance sealing materials. In particular, the polyurethanes have outstanding mechanical properties which outperform many other elastomeric sealing materials (like rubbers). Possible application limits are chemical resistance and in some cases, very high temperatures. For further information, please contact SKF competence centres for machined seals.

<table>
<thead>
<tr>
<th>Material</th>
<th>Colour</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOPUR</td>
<td>Green</td>
<td>Recommended for hydraulic applications, good chemical resistance</td>
</tr>
<tr>
<td>ECOPUR LD</td>
<td>Green</td>
<td>Cast polyurethane elastomer (CPU) for large diameter seals with similar properties to ECOPUR</td>
</tr>
<tr>
<td>G-ECOPUR</td>
<td>Red</td>
<td>Hydrolysis-resistant cast polyurethane elastomer (CPU) with similar properties to H-ECOPUR.</td>
</tr>
<tr>
<td>H-ECOPUR</td>
<td>Red</td>
<td>Outstanding chemical resistance against water-based fluids</td>
</tr>
<tr>
<td>S-ECOPUR</td>
<td>Grey/black</td>
<td>Outstanding sliding performance, similar mechanical and chemical properties to H-ECOPUR.</td>
</tr>
<tr>
<td>T-ECOPUR</td>
<td>Blue</td>
<td>Low temperature grade, excellent cold flexibility, limited chemical resistance</td>
</tr>
<tr>
<td>X-ECOPUR</td>
<td>Dark green</td>
<td>Increased pressure and extrusion resistance, recommended for composite seals, chemical resistance similar to ECOPUR</td>
</tr>
<tr>
<td>X-ECOPUR H</td>
<td>Dark red</td>
<td>Increased pressure and extrusion resistance, recommended for composite seals, chemical resistance similar to H-ECOPUR</td>
</tr>
<tr>
<td>X-ECOPUR S</td>
<td>Dark grey</td>
<td>Increased pressure and extrusion resistance, recommended for composite seals, chemical resistance similar to H-ECOPUR, outstanding sliding performance</td>
</tr>
</tbody>
</table>

Elastomers

High quality rubber standard grades with the commonly known features of elastomeric materials, good chemical resistance, but limitations in mechanical properties. For further information, please contact SKF competence centres for machined seals.

<table>
<thead>
<tr>
<th>Material</th>
<th>Colour</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKF Ecoflas</td>
<td>Black</td>
<td>Fluoro-elastomer with outstanding resistance to hot water and steam</td>
</tr>
<tr>
<td>SKF Ecorubber-H</td>
<td>Black</td>
<td>Standard grade with good mechanical and chemical properties</td>
</tr>
<tr>
<td>SKF Ecorubber-1</td>
<td>Black</td>
<td>Standard grade, good chemical resistance</td>
</tr>
<tr>
<td>SKF Ecorubber-2</td>
<td>Brown</td>
<td>Standard grade with good chemical resistance</td>
</tr>
<tr>
<td>SKF Ecorubber-3</td>
<td>Black</td>
<td>Standard grade with good mechanical properties, recommended for steam injection</td>
</tr>
<tr>
<td>SKF Ecosil</td>
<td>Reddish brown</td>
<td>Silicone rubber with high resistance against weathering, ozone and ageing</td>
</tr>
</tbody>
</table>
Thermoplastics and special materials

Thermoplastics and special glassfibre reinforced materials with outstanding mechanical properties. For further information, please contact SKF competence centres for machined seals.

<table>
<thead>
<tr>
<th>Material</th>
<th>Colour</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKF Ecomid</td>
<td>(PA)</td>
<td>Black Standard grade with good mechanical properties (glass filled grades for increased pressure resistance are also available)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Not to be used in water or moist environments.</td>
</tr>
<tr>
<td>SKF Ecopaek</td>
<td>(PEEK)</td>
<td>Cream/black Exceptional mechanical, chemical and thermal resistance</td>
</tr>
<tr>
<td>SKF Ecotal</td>
<td>(POM)</td>
<td>Black Standard grade with good mechanical properties (glass filled grades for increased pressure resistance are also available)</td>
</tr>
<tr>
<td>SKF Ecotex</td>
<td>(fabric reinforced material on polyester resin base)</td>
<td>Light orange High wear and pressure resistance</td>
</tr>
</tbody>
</table>

PTFE and its compounds

Top performance PTFE compound materials with highest chemical and temperature resistance, optimized for sealing applications. For further information, please contact SKF competence centres for machined seals.

<table>
<thead>
<tr>
<th>Material</th>
<th>Colour</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKF Ecoflon 1</td>
<td>(PTFE, virgin)</td>
<td>White High chemical resistance</td>
</tr>
<tr>
<td>SKF Ecoflon 2</td>
<td>(PTFE, 15% glass, 5% MOS2)</td>
<td>Grey Good mechanical properties</td>
</tr>
<tr>
<td>SKF Ecoflon 3</td>
<td>(PTFE, 40% bronze)</td>
<td>Bronze Good tribological properties, high pressure resistance</td>
</tr>
<tr>
<td>SKF Ecoflon 4</td>
<td>(PTFE, 25% carbon)</td>
<td>Black High wear and pressure resistance</td>
</tr>
<tr>
<td>SKF Ecoflon 5</td>
<td>(PTFE, modified)</td>
<td>White Unfilled modified grade to increased pressure and creep resistance</td>
</tr>
</tbody>
</table>

1) SKF also offers a wide range of individual thermoplastic materials specially designed for guide rings, backup rings, etc...

2) SKF also offers a wide range of organic and inorganic compounds, such as PTFE + glass, PTFE + graphite (steam injection), PTFE + EKOND, PTFE + Pi, PTFE + PEEK, etc...
Material properties

Polyurethanes

<table>
<thead>
<tr>
<th>Properties</th>
<th>Standard</th>
<th>Unit</th>
<th>TPU</th>
<th>CPU</th>
<th>CPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
<th>TPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard colour</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>DIN ISO 7619</td>
<td>Shore A</td>
<td>95 ±2</td>
<td>95 ±2</td>
<td>95 ±2</td>
<td>95 ±2</td>
<td>95 ±2</td>
<td>95 ±2</td>
<td>97 ±2</td>
<td>97 ±2</td>
<td>97 ±2</td>
<td>97 ±2</td>
<td>97 ±2</td>
<td>97 ±2</td>
</tr>
<tr>
<td>Hardness</td>
<td>DIN ISO 7619</td>
<td>Shore D</td>
<td>48 ±3</td>
<td>48 ±3</td>
<td>47 ±3</td>
<td>48 ±3</td>
<td>48 ±3</td>
<td>48 ±3</td>
<td>57 ±3</td>
<td>60 ±3</td>
<td>58 ±3</td>
<td>58 ±3</td>
<td>58 ±3</td>
<td>58 ±3</td>
</tr>
<tr>
<td>Density</td>
<td>DIN EN ISO 1183</td>
<td>g/cm³</td>
<td>1,2</td>
<td>1,19</td>
<td>1,17</td>
<td>1,2</td>
<td>1,23</td>
<td>1,17</td>
<td>1,21</td>
<td>1,22</td>
<td>1,22</td>
<td>1,22</td>
<td>1,22</td>
<td>1,22</td>
</tr>
<tr>
<td>100% modulus</td>
<td>DIN 53504</td>
<td>MPa</td>
<td>12</td>
<td>> 10</td>
<td>> 11</td>
<td>> 13</td>
<td>> 17</td>
<td>> 12</td>
<td>> 16</td>
<td>> 22</td>
<td>> 22</td>
<td>> 22</td>
<td>> 22</td>
<td>> 22</td>
</tr>
<tr>
<td>Tensile strength/yield stress</td>
<td>DIN 53504</td>
<td>MPa</td>
<td>> 50</td>
<td>> 45</td>
<td>> 45</td>
<td>> 50</td>
<td>> 45</td>
<td>> 50</td>
<td>> 45</td>
<td>> 45</td>
<td>> 45</td>
<td>> 45</td>
<td>> 45</td>
<td>> 45</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>DIN 53504</td>
<td>%</td>
<td>> 430</td>
<td>> 380</td>
<td>> 330</td>
<td>> 330</td>
<td>> 380</td>
<td>> 450</td>
<td>> 400</td>
<td>> 350</td>
<td>> 300</td>
<td>> 300</td>
<td>> 300</td>
<td>> 300</td>
</tr>
<tr>
<td>Modulus of elasticity – tensile test</td>
<td>ISO 527-1/2</td>
<td>MPa</td>
<td>–</td>
</tr>
<tr>
<td>Compression set</td>
<td></td>
</tr>
<tr>
<td>70 °C/24h 20% compression</td>
<td>DIN ISO 815</td>
<td>%</td>
<td>≤ 27</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 27</td>
<td>≤ 30</td>
<td>≤ 27</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 30</td>
</tr>
<tr>
<td>100 °C/24h 20% compression</td>
<td>DIN ISO 815</td>
<td>%</td>
<td>≤ 33</td>
<td>≤ 40</td>
<td>≤ 40</td>
<td>≤ 33</td>
<td>≤ 35</td>
<td>45</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
</tr>
<tr>
<td>100 °C/24h</td>
<td>DIN ISO 815</td>
<td>%</td>
<td>–</td>
</tr>
<tr>
<td>175 °C/24h</td>
<td>DIN ISO 815</td>
<td>%</td>
<td>–</td>
</tr>
<tr>
<td>Tear strength</td>
<td>DIN ISO 34-1</td>
<td>N/mm²</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>120</td>
<td>80</td>
<td>130</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Abrasion</td>
<td>DIN ISO 4649</td>
<td>mm³</td>
<td>18</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>29</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Minimum service temperature ¹</td>
<td>°C</td>
<td></td>
<td>-30</td>
<td>-35</td>
<td>-30</td>
<td>-20</td>
<td>-20</td>
<td>-50</td>
<td>-30</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
<td>-20</td>
</tr>
<tr>
<td>Maximum service temperature ¹</td>
<td>°C</td>
<td></td>
<td>+110</td>
</tr>
</tbody>
</table>

¹ Testing time 3 s only valid for polyurethanes

² DIN EN ISO 868

³ DIN ISO 815 at -40 °C/24h 20% compression

⁴ ASTM D4894

⁵ ASTM 4745

⁶ ISO 527-3/2

⁷ Minimum and maximum service temperatures are material properties only. Deviations due to varying application parameters are mentioned/stated at each seal profile at the following pages.

Data concerning special materials based on the here mentioned standard grades are available on request.
<table>
<thead>
<tr>
<th>Elastomers</th>
<th>Thermoplastics</th>
<th>Thermoset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKF Ecotex</td>
<td>SKF Ecorubber-1</td>
<td>SKF Ecopak</td>
</tr>
<tr>
<td>SKF Ecoflon 1</td>
<td>SKF Ecorubber-2</td>
<td>SKF Ecsol</td>
</tr>
<tr>
<td>SKF Ecoflon 2</td>
<td>SKF Ecorubber-3</td>
<td>SKF Ecomid</td>
</tr>
<tr>
<td>SKF Ecoflon 2 + 5% FKM</td>
<td>SKF Ecoflon 3</td>
<td>SKF Ecostex</td>
</tr>
<tr>
<td>SKF Ecoflon 4</td>
<td>SKF Ecorubber-4</td>
<td>SKF Ecowear 1000</td>
</tr>
<tr>
<td>SKF Ecoflon 5</td>
<td>SKF Ecorubber-5</td>
<td>SKF Ecoflex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness DIN ISO 7619 Shore A ±2</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>Hardness DIN ISO 7619 Shore D ±2</td>
<td>48</td>
<td>48</td>
<td>47</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>57</td>
<td>60</td>
<td>58</td>
<td>62</td>
<td>65</td>
<td>67</td>
<td>65</td>
</tr>
<tr>
<td>Density DIN EN ISO 1183 g/cm³</td>
<td>1,2</td>
<td>1,19</td>
<td>1,17</td>
<td>1,2</td>
<td>1,23</td>
<td>1,17</td>
<td>1,21</td>
<td>1,22</td>
<td>1,23</td>
<td>1,73</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
<td>1,52</td>
<td>2,16</td>
<td>2,25</td>
<td>3,05</td>
<td>2,1</td>
<td>2,16</td>
<td>1,15</td>
<td>1,30</td>
<td>1,41</td>
<td>0,93</td>
<td>1,21</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
<td>1,31</td>
<td>1,41</td>
<td>0,93</td>
<td>1,21</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
</tr>
<tr>
<td>100% modulus DIN 53504 MPa</td>
<td>12</td>
<td>≥ 10</td>
<td>≥ 11</td>
<td>57</td>
<td>62</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>Tensile strength/yield stress DIN 53504 MPa</td>
<td>≥ 50</td>
<td>≥ 45</td>
<td>≥ 45</td>
<td>≥ 50</td>
<td>≥ 45</td>
<td>≥ 50</td>
<td>≥ 45</td>
<td>≥ 45</td>
<td>≥ 38</td>
<td>13</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Modulus of elasticity – tensile test ISO 527-1/2 MPa</td>
<td>–</td>
</tr>
<tr>
<td>Compression set 70 °C/24h %</td>
<td>≤ 27</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 27</td>
<td>≤ 30</td>
<td>≤ 27</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>≤ 30</td>
<td>1,73</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
<td>1,52</td>
<td>2,16</td>
<td>2,25</td>
<td>3,05</td>
<td>2,1</td>
<td>2,16</td>
<td>1,15</td>
<td>1,30</td>
<td>1,41</td>
<td>0,93</td>
<td>1,21</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
<td>1,31</td>
<td>1,41</td>
<td>0,93</td>
<td>1,21</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
</tr>
<tr>
<td>100 °C/24h %</td>
<td>≤ 33</td>
<td>≤ 40</td>
<td>≤ 40</td>
<td>≤ 33</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>≤ 35</td>
<td>1,73</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
<td>1,52</td>
<td>2,16</td>
<td>2,25</td>
<td>3,05</td>
<td>2,1</td>
<td>2,16</td>
<td>1,15</td>
<td>1,30</td>
<td>1,41</td>
<td>0,93</td>
<td>1,21</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
<td>1,31</td>
<td>1,41</td>
<td>0,93</td>
<td>1,21</td>
<td>1,23</td>
<td>1,31</td>
<td>2,33</td>
<td>1,22</td>
</tr>
<tr>
<td>175 °C/24h %</td>
<td>–</td>
</tr>
<tr>
<td>Tear strength DIN ISO 34-1 N/mm</td>
<td>100</td>
<td>–</td>
</tr>
<tr>
<td>Abrasion DIN ISO 4649 mm³</td>
<td>18</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>29</td>
<td>110</td>
<td>90</td>
<td>90</td>
<td>150</td>
<td>120</td>
<td>–</td>
</tr>
</tbody>
</table>

1) Testing time 3 s only valid for polyurethanes
2) DIN EN ISO 868
3) DIN ISO 815 at –40 °C/24h 20% compression
4) ASTM D4894
5) ASTM 4745
6) ISO 527-1/2
7) Minimum and maximum service temperatures are material properties only. Deviations due to varying application parameters are mentioned/stated at each seal profile at the following pages.

Data concerning special materials based on the here mentioned standard grades are available on request.
Working fluids and sealing materials

Machine tools with a wide range of different working fluids may require chemical resistant sealing solutions. Due to increased safety and contamination regulations and standards, more and more combustible fluids, such as mineral oils, are replaced by fire-resistant fluids.

These fire-resistant fluids can be divided into two main groups:

- Water-based fluids and
- Synthetic fluids

The water-based fluids can be divided into fluids with high (HWB-fluids) and low (LWB-fluids) water content. The main chemical composition is summarised in **table 1**. Due to the water content of these fluids, the working temperature is limited to 60 °C to avoid equipment damage. For higher temperatures, fire-resistant fluids with a synthetic composition are available (HFD).

Generally, all fire-resistant working fluids strongly affect sealing materials and therefore the selection of the seal material must be more accurate compared to seals used in mineral oils.

SKF has many years of experience in sealing systems for these kinds of critical applications and has extensively investigated the compatibility of seals with these types of fluids. The results of these investigations and general recommendations for suitable sealing materials are summarized in **table 2**.

Table 1

Composition of water-based fluids

<table>
<thead>
<tr>
<th>Category</th>
<th>Characterisation</th>
<th>Water content (%)</th>
<th>Non-water ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFA–E</td>
<td>Oil-in-water emulsion</td>
<td>90–98</td>
<td>Mineral oil, emulsifiers, stabilizers, corrosion inhibitors, etc.</td>
</tr>
<tr>
<td>HFA–S</td>
<td>Synthetic solutions</td>
<td>90–98</td>
<td>Synthetic fluids, fluids in water antioxidants, corrosion inhibitors, detergents/dispergents</td>
</tr>
<tr>
<td>HFB</td>
<td>Water-in-oil emulsion</td>
<td>0–40</td>
<td>Mineral oil, emulsifiers, stabilizers, corrosion inhibitors, etc.</td>
</tr>
<tr>
<td>HFC</td>
<td>Water-glycol solutions</td>
<td>35–50</td>
<td>Polyalkylene glycols, corrosion inhibitors, various additives</td>
</tr>
</tbody>
</table>

Table 2

Fluid compatibility of sealing materials

<table>
<thead>
<tr>
<th>Category</th>
<th>Service temp. (°C)</th>
<th>Compatible sealing materials</th>
<th>SKF recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFA–E</td>
<td>+5 to 60</td>
<td>NBR, HNBR and specially formulated FPM</td>
<td>Specially formulated polyurethanes (e.g. H-ECOPUR)</td>
</tr>
<tr>
<td>HFA–S</td>
<td>+5 to 60</td>
<td>Individual tests necessary</td>
<td>Specially formulated polyurethanes (e.g. H-ECOPUR), SKF Ecorubber-1/H/2/3</td>
</tr>
<tr>
<td>HFB</td>
<td>+5 to 60</td>
<td>NBR, HNBR and specially formulated FPM</td>
<td>Specially formulated polyurethanes (e.g. H-ECOPUR)</td>
</tr>
<tr>
<td>HFC</td>
<td>–20 to 60</td>
<td>NBR, HNBR, EPDM and MVQ</td>
<td>Depending on the temperature range, specially formulated polyurethanes (e.g. H-ECOPUR)</td>
</tr>
</tbody>
</table>
Chemical resistance

<table>
<thead>
<tr>
<th>Chemical and environmental resistance</th>
<th>Temperature</th>
<th>Polyurethanes</th>
<th>Elastomers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– inorganic, diluted</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– inorganic, concentrated</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– organic, diluted</td>
<td>RT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– organic, concentrated</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alkalies</td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydraulic fluids</td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– general</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– mineral oil based</td>
<td>RT</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– synthetic oils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HETG (triglyceride)</td>
<td>RT</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HEES (synthetic ester)</td>
<td>RT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEPG (polyglycols)</td>
<td>RT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEPR (polyalphaolefines)</td>
<td>RT</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fire resistant fluids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– HFA (water – oil emulsion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFA-E</td>
<td>RT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HFA-S</td>
<td>RT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– HFB (oil – water emulsion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– HFC (water – glycol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Toluene</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– Acetone</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– MEK</td>
<td>RT</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Steam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Rating legend:
+ Excellent
o Good / fair
– Poor

IMPORTANT: The tables on this page and the next page provide valuable assistance in the choice of materials. The data listed here are within the normal range of product properties. However, they are not guaranteed, should not be used to establish material specification limits and should be used in combination with other design guidelines. Please contact SKF for additional information.
Thermoplastics

<table>
<thead>
<tr>
<th>Chemical and environmental resistance</th>
<th>SKF Ecoflon 1</th>
<th>SKF Ecoflon 2</th>
<th>SKF Ecoflon 3</th>
<th>SKF Ecoflon 4</th>
<th>SKF Ecoflon 5</th>
<th>SKF Ecotal</th>
<th>SKF Ecopack</th>
<th>SKF Ecotal</th>
<th>SKF Ecotex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– inorganic, diluted</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– inorganic, concentrated</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>– organic, diluted</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– organic, concentrated</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alkalies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– general</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydraulic fluids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– mineral oil based</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– synthetic oils</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HETG</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HEES</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HEP6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HEPR</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fire resistant fluids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– HFA (water – oil emulsion)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HFA-E</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HFA-S</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– HFB (oil – water emulsion)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– HFC (water – glycol)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– HFD (water free)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Solvents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Toluene</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– Acetone</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>– MEK</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Steam</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Water</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
The Power of Knowledge Engineering

Combining products, people, and application-specific knowledge, SKF delivers innovative solutions to equipment manufacturers and production facilities in every major industry worldwide. Having expertise in multiple competence areas supports SKF Life Cycle Management, a proven approach to improving equipment reliability, optimizing operational and energy efficiency and reducing total cost of ownership.

These competence areas include bearings and units, seals, lubrication systems, mechatronics, and a wide range of services, from 3-D computer modelling to cloud-based condition monitoring and asset management services.

SKF’s global footprint provides SKF customers with uniform quality standards and worldwide product availability. Our local presence provides direct access to the experience, knowledge and ingenuity of SKF people.

® SKF ECOPUR, G-ECOPUR, H-ECOPUR, S-ECOPUR, T-ECOPUR, X-ECOPUR and SEAL JET are registered trademarks of the SKF Group

© SKF Group 2014

The content of this publication is the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

PUB SE/52 10397/2 EN - November 2014

Certain image(s) used under license from Shutterstock.com