Please read and thoroughly understand the contents of this entire guide before performing any installation of this product. Failure to follow the instructions and safety precautions in this manual can result in serious injury, damage to the product, damage to other equipment, or a malfunctioning system. Keep this guide in a safe and ready location for future reference.
Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in its installation. This equipment generates, uses and radiates radio-frequency energy and, if not installed and used in accordance with the product manual, may cause harmful interference to radio communications. If this equipment does cause harmful interference, the user will be required to correct the interference.

Due to the phenomena being observed and the material properties being measured, this equipment does radiate radio frequency energy while in the active test mode. Care should be taken to insure this radio frequency energy causes no harm to individuals or other nearby equipment.

Information furnished in this manual is believed to be accurate and reliable. However, Baker/SKF, assumes no responsibility for the use of such information or for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of Baker/SKF.

Warning:
Baker/SKF, assumes no liability for damages consequent to the use of this product. No part of this document may be reproduced in part or in full by any means such as photocopying, photographs, electronic recording, videotaping, facsimile, etc., without written permission from Baker/SKF, Fort Collins, Colorado.

Intended use of instrument
The NetEP is intended for the monitoring of electric motors and machines for the purpose of detecting and reporting early indications of motor and machine faults. It is not intended to be a control nor safety system.
Note on Software
While the NetEP is a Microsoft Windows® based instrument, it is specially configured and optimized to perform the functions for which it was designed. The loading or operation of unauthorized software may cause the instrument to malfunction or cease functioning and may void the manufacturer’s warranty.

Software License Agreement
NetEP - test equipment and desktop versions.

Carefully read the following terms and conditions before opening the software envelope or operating the NetEP. Either opening the envelope or using the software constitutes your acceptance of these terms and conditions on behalf of any party using the instrument (the “User”). If you or the User do not agree with these terms, promptly return the instrument with the envelope unopened for a full refund.

1. Definitions

(a) **Computer Software**: A Software program provided with the Instrument on CD or other physical medium for installation and use on the User’s desktop computer(s) or servers, and all updates, upgrades, enhancements and modifications provided directly or indirectly to the User from time to time.

(b) **Documentation**: This User’s Manual and other manuals and documentation relating to the Instrument and provided directly or indirectly to the User in the original Instrument carton or from time to time thereafter.

(c) **Instrument**: The unit of test equipment with which this User’s Manual was provided to the User.

(d) **Instrument Software**: The software program pre-loaded on the Instrument, and all updates, upgrades, enhancements and modifications provided directly or indirectly to the User from time to time.

(e) **Software**: The Instrument Software and/or Computer Software, as the context requires.

(f) **Intellectual Property Rights**: All rights arising or protectable under the copyright, trademark, patent, or trade secrets laws of the United States or any other nation, including all rights associated with the protection of computer programs and/or source code.

(g) **Person**: An individual, a partnership, a company, an association, a joint stock company, a trust, a joint venture, an unincorporated organization, or a governmental entity (or any department, agency, or political subdivision thereof).

2. License; Related Terms.

(a) **Grant of License.** Baker/SKF grants the User, pursuant to the terms and conditions of this Software License, a non-exclusive, non-transferable, and revocable license to (i) use the Instrument Software only on the Instrument, (ii) the Computer Software(s) on the numbers and types of desktop and/or other computers specified elsewhere in this User’s Manual, (iii) reproduce the Software only as necessary to use it and create no more than two copies of the Software in machine readable form for back-up purpose only; provided in each case that the copy shall include Baker/SKF’s copyright and any other proprietary notices, and (iv) utilize the Documentation only in conjunction with the use of the Software.

(b) **Restrictions on Use.** The User shall not (i) permit any parent, subsidiaries, affiliated entities or third parties to use the Software; (ii) grant third parties use of the Software on a service bureau, application service provider or other similar basis; (iii) rent, resell, lease, timeshare or lend the Software to any Person; (iv) sublicense, assign, or transfer the Software or this license for the Software to any third party, (v) reproduce the Software other than as expressly authorized herein, or distribute, or publicly display the Software; (vi) make the Software accessible to any Person by any means, including posting on a web site or through other distribution mechanisms over the Internet; (vii) reverse assemble, disassemble, reverse engineer, reverse compile, decompile, or otherwise translate the Software or prepare Derivative Works based on the Software; (viii) place, reproduce, or make available the Software on the User’s computer network if the User is only authorized by this Software License to operate the Software on a single workstation; (ix) exceed at
any given point in time the total number of network clients authorized by the applicable purchase
order or ordering document to use or access the Software; or (x) edit or modify the Software except
as expressly authorized by Baker/SKF, including altering, deleting, or obscuring any proprietary
rights notices embedded in or affixed to the Software.
(c) Protection of Software. The User will take action by instruction, written agreement, or otherwise
as appropriate with any person permitted access to the Software to enable the User to comply with
its obligations hereunder.
(d) Material Terms and Conditions. The User acknowledges that each of the terms and conditions of
this Section 2 is material and that failure of the User to comply with these terms and conditions
shall constitute sufficient cause for Baker/SKF to terminate this Software License and the license
granted hereunder immediately and without an opportunity to cure. This subsection 2(d) shall not
be construed to preclude, or in any way effect, a finding of materiality with respect to any other
provision of this Software License.

Rights related to the Software, including custom modifications to the Software, whether made by
Baker/SKF or any third party. The User agrees that this Software License effects a license, not a
sale, of the Software and that the first sale doctrine, as codified in 17 U.S.C. § 109, does not apply
to the transaction effected by this Software License.

4. Confidential Information. The Software contains proprietary information, including trade
secrets, know-how and confidential information (hereinafter referred to collectively as the
"Confidential Information"), that is the exclusive property of Baker/SKF. During the period this
Software License is in effect and at all times after its termination, the User and its employees and
agents shall maintain the confidentiality of the Confidential Information and shall not sell, license,
publish, display, distribute, disclose or otherwise make available the Confidential Information to any
Person nor use the Confidential Information except as authorized by this Software License. The
User shall not disclose the Confidential Information concerning the Software, including any flow
charts, logic diagrams, user manuals and screens, to persons not an employee of the User without
the prior written consent of Baker/SKF.

5. Limited Warranties; Disclaimer
(a) Baker/SKF’s sole and exclusive warranties with respect to the Instrument and Software are set
(b) EXCEPT AS SET FORTH IN THIS USER’S MANUAL AND TO THE EXTENT PERMITTED BY
APPLICABLE LAW, ALL EXPRESS AND/OR IMPLIED WARRANTIES OR CONDITIONS, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
MERCHANTABILITY OF A COMPUTER PROGRAM, INFORMATIONAL CONTENT, SYSTEM
INTEGRATION, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, ARE HEREBY
DISCLAIMED AND EXCLUDED BY BAKER/SKF.

6. Limitations on Liability
(a) Limitations and Exclusions. IN NO EVENT WILL BAKER/SKF BE LIABLE TO LICENSEE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR OTHER SPECIAL DAMAGES,
LOST PROFITS, OR LOSS OF INFORMATION SUFFERED BY LICENSEE ARISING OUT OF OR
RELATED TO THE INSTRUMENT OR THE USE OF THE INSTRUMENT, FOR ALL CAUSES OF
ACTION OF ANY KIND (INCLUDING TORT, CONTRACT, NEGLIGENCE, STRICT LIABILITY, BREACH
OF WARRANTY OR CONDITION, AND STATUTORY) EVEN IF BAKER/SKF HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. THE PRECEDING EXCLUSION AND DISCLAIMER OF
DAMAGES SHALL APPLY TO ALL CLAIMS MADE BY LICENSEE RELATED TO OR ARISING OUT OF
LICENSEE’S USE OF THE SOFTWARE, INCLUDING, BUT NOT LIMITED TO, CLAIMS ALLEGING
THAT THE SOFTWARE, OR ANY COMPONENT THEREOF, FAILED OF ITS ESSENTIAL PURPOSE OR
FAILED IN SOME OTHER RESPECT.
(b) Acknowledgment. The User agrees that the limitations of liability and disclaimers of warranty
set forth in this Software License will apply regardless of whether Baker/SKF has tendered delivery
of the Software or the User has accepted the Software. The User acknowledges that Baker/SKF has set its prices and granted the licenses contemplated herein in reliance on the disclaimers of warranty and the limitations and exclusions of liability set forth in this Software License, and that the same form an essential basis of the bargain between the Parties.

7. Term and Termination
(a) **Term.** The licenses granted herein shall commence on the User’s acceptance of the terms of this Software License, and shall continue in existence until it is terminated in accordance with Section 7(b) below.
(b) **Termination.** Baker/SKF may terminate this Software License and the license conveyed hereunder in the event that the User breaches any provision, term, condition, or limitation set forth in this Software License, including but not limited to the license restrictions set forth in Section 2(b) of this Software License.
(c) **Effect of Termination.** Within ten (10) days after termination of this Software License and the licenses granted hereunder, the User shall return to Baker/SKF, at the User’s expense, the Computer Software and all copies thereof, and deliver to Baker/SKF a certification, in a writing signed by an officer of the User, that all copies of the Computer Software have been returned to Baker/SKF and that the User has complied with the requirements of this Section 7(c).

8. Assignment. The User may assign this Software License in connection with the sale or other transfer of the Instrument, provided, that the transferee agrees in writing to be bound by the terms of this Software License. Except as authorized by the preceding sentence, the User shall not assign or otherwise transfer the Software or this Software License to anyone, including any parent, subsidiaries, affiliated entities or third Parties, or as part of the sale of any portion of its business, or pursuant to any merger, consolidation or reorganization, without Baker/SKF’s prior written consent. Any assignment or transfer effected in violation of this Section 8 shall be void ab initio and of no force or effect.

9. General. The validity and interpretation of this Software License shall be governed by Colorado Law except as to copyright and other proprietary matters, which may be preempted by United States laws and international treaties. In the event of any violation of this Software License, Baker/SKF reserves the right to pursue any state law remedies (including contractual remedies) or remedies under federal laws or both. The User consents to exclusive jurisdiction in either state or federal courts in Colorado or both as appropriate and agrees that the prevailing party shall be entitled to its attorney fees and costs. No decision, act or inaction of Baker/SKF, shall be construed to be a waiver of any right or remedy, and pursuit of any state or federal causes shall not be deemed an election or remedies. In the event of any provision of this Software License shall be deemed unenforceable, or void, or invalid, such provision shall be modified so as to make it valid and enforceable and as so modified the entire agreement shall remain in full force and effect. This Software License sets forth the entire understanding and agreement between the parties and no written or oral representative of any kind whatsoever shall in any way modify or expand the terms of this User’s Manual.

In the event of any conflict or inconsistency between the terms of this Software License and any Documentation, this agreement shall preempt such documentation to the extent inconsistent.

WARNING: All material associated with this Software License is copyrighted material. Federal law provides severe civil and criminal penalties for the unauthorized reproduction, distribution, or use of copyrighted materials (Title 17, United States Code). The Federal Bureau of Investigation investigates allegation of criminal infringement for enforcement. Should you have any questions concerning this User’s Manual, you may contact Baker/SKF, at 4812 McMurry Avenue, Suite 100, Fort Collins, Colorado 80525. Telephone 970-282-1200; Fax 970-282-1010, www.bakerinst.com.
Important notice concerning warranty and repairs

The warranty is void if (i) the NetEP is damaged by improper use, (ii) any party other than Baker/SKF modifies the Software or loads or operates unauthorized software programs on the NetEP, or (iii) the User has breached the Software License set forth above. The User assumes all responsibility and expense for removal, reinstallation, freight, or on-site service charges in connection with the foregoing remedies.

Baker/SKF’s liability to purchaser relating to the product whether in contract or in part arising out of warranties, representations, instructions, installations, or defects from any cause, shall be limited exclusively to correcting the product and under the conditions as aforesaid.

If the NetEP fails, whether it is under warranty or not, call the Baker/SKF service department before returning the unit for repair. If the unit needs in-house repair, our service staff might direct you to ship the unit to the authorized service center closest to you. This might save both time and money. When calling the Baker service department or one of the service centers, please have the model and serial numbers available. These numbers are located on the rear of the instrument. If the unit is out of warranty, a purchase order will be required if the unit is returned for repair.

Warranties department number: (970) 282-1200 or toll free at (800) 752-8272.

Warranties; Disclaimers

Limited Warranty as to Baker/SKF Brand Products. Baker/SKF warrants that Baker/SKF brand Products, if any, that are sold under the Agreement shall be of the kind and quality described in Baker/SKF’s acknowledgment of Buyer’s Order, and shall be free of material defects in workmanship and material for a period from the date of shipment equal to (i) twelve (12) months in the case of new Products (including factory-installed circuit boards), (ii) six (6) months in the case of used or refurbished Products, and new circuit boards delivered separately, (iii) a period of ninety (90) days from the date of shipment in the case of used or refurbished circuit boards. If any such Product is not as warranted, Buyer must notify Baker/SKF thereof in writing within the applicable warranty period. Baker/SKF’s sole obligation, and Buyer’s sole remedy, shall be (at Baker/SKF’s sole option) to adjust or repair or replace of the applicable Product or the affected part of the Product.

Limited Warranty as to Services. Baker/SKF warrants for a period of ninety (90) days following completion that the services Baker/SKF provides to Buyer will be of workmanlike quality and will be performed in a workmanlike manner.

No Other Warranty. EXCEPT AS EXPRESSLY PROVIDED BY THIS SECTION 0, BAKER/SKF HAS NOT MADE, AND DOES NOT INTEND TO MAKE ANY PROMISE, REPRESENTATION, GUARANTEE OR WARRANTY, EITHER EXPRESS OR IMPLIED, OF ANY KIND WHATSOEVER WITH RESPECT TO ANY PRODUCT, SERVICE OR REPAIR, INCLUDING AND BAKER/SKF HEREBY DISCLAIMS ANY AND ALL OTHER WARRANTIES INCLUDING ANY EXPRESS OR IMPLIED WARRANTY OF (1) MERCHANTABILITY, (2) FITNESS FOR A PARTICULAR PURPOSE (3) THE QUALITY OR CAPACITY, OR WORKMANSHIP; (4) LATENT DEFECTS; (5) ANY PATENT INFRINGEMENT BY ANY PRODUCT OR USE THEREOF; OR (6) THE COMPLIANCE OF ANY PRODUCT WITH ANY REQUIREMENTS OF ANY LAW, RULE, REGULATION, SPECIFICATION, OR CONTRACT PERTAINING THERETO. CONSISTENT WITH THE FOREGOING, IT IS UNDERSTOOD AND AGREED THAT BAKER/SKF DOES NOT MAKE ANY PROMISE, REPRESENTATION, GUARANTEE OR WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO THE SUFFICIENCY OF THE SERVICES TO BE PROVIDED HERUNDER BY BAKER/SKF, INCLUDING ANY WARRANTY AGAINST THE EQUIPMENT BECOMING DEFECTIVE OR INOPERABLE, OR THAT THE EQUIPMENT OR ANY OR ALL DEFICIENCIES, ERRORS, DEFECTS OR NONCONFORMITIES THEREIN WILL BE CORRECTED BY BAKER/SKF. WITHOUT LIMITING THE PROVISIONS OF SECTION 0, EXCEPT AS TO TITLE, BAKER/SKF MAKES NO WARRANTIES EITHER EXPRESS OR IMPLIED (INCLUDING ANY WARRANTIES AS TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE) WITH RESPECT TO
ANY OTHER PRODUCTS AS MAY BE PROVIDED OR SOLD UNDER THE AGREEMENT BY BAKER/SKF AND BUYER AGREES THAT IT SHALL BE LIMITED TO THE WARRANTIES OF THE RESPECTIVE MANUFACTURERS OF SUCH PRODUCTS SOLD BY BAKER/SKF UNDER THE AGREEMENT.

Sole Supplier of Service.
Buyer shall not carry out, or let any other party carry out, maintenance service, which, according to this Agreement, shall be carried by Baker/SKF unless Baker/SKF gives its prior written consent to such maintenance service. If Buyer fails to comply with this clause, Baker/SKF shall be relieved of all further responsibility and liability for maintenance service or remedy promised, or required to be provided by Baker/SKF under the Agreement.

Virus Alert
The NETEP contains computer software that is vulnerable to damage from computer viruses. Before shipping, Baker/SKF scanned all data to ensure the NETEP is virus-free. Before inserting any disks into the disk drive or connecting the NETEP to a computer network, scan all disks for viruses.

Trademarks
All other trademarks, service marks or registered trademarks appearing in this manual are the trademarks, service marks or registered trademarks of their respective owners.
Table of Contents

- Possible causes of high current: ... 40
- Distortion ... 41
- Aggregate harmonics measurements are: .. 42
- Machine data .. 43
- Power data .. 44
- Aggregate Power Measurements .. 45
- Power quality ... 46
- Voltage ... 48
- Voltage, current and torque spectrum ... 48
- Cage rotor designs: ... 49
- Wound rotor designs: .. 49
- Torque .. 50

5. Alarms... 56
- Alarms tab overview ... 56
- Acknowledging alarms .. 57
- Alarm parameters ... 57
- Use caution when setting Alarm Limit Values ... 58
- Enabling alarms .. 59
- Viewing alarm status .. 59

6. Dashboard .. 62

7. Voltage/Current .. 67
- Time waveform plots .. 67
- Spectrum Plots .. 69
- Markers ... 70

8. Torque .. 74
- Torque time waveform (torque vs time) ... 74
- Torque Spectrum ... 75
- Markers ... 76

9. Trending ... 78
- Grid View ... 78
- Graph view .. 79
- Multiple Windows ... 80

Appendix A ... 82

Installing MS SQL Server or MS SQL Express 2005, 2008 (reference only) ... 82

Installing SQL Server or SQL Express 2005 ... 82
- Configuring SQL to allow remote connections ... 84
- Restart Database Engine Server and SQL Service Browser 85

Installing SQL Server or SQL Express 2008 ... 85
- Configuring SQL Server to allow Remote Connection (XP) 88
- Configuring Windows firewall to allow remote connection (Windows XP x 86) 89

Appendix B ... 90

Technical specifications .. 90
- Technical specifications and capabilities ... 90
- NetEP technical specifications ... 91
- Environmental ... 91
- Standard Compliance .. 91
- NetEP Device Computer ... 91
- External Interfaces ... 91
- Ethernet Communication .. 91
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetEP Device Data Storage</td>
<td>91</td>
</tr>
<tr>
<td>Desktop Computer Requirements (Computer not provided by Baker/SKF)</td>
<td>91</td>
</tr>
<tr>
<td>Server Requirements (Computer not provided by Baker/SKF)</td>
<td>91</td>
</tr>
<tr>
<td>Voltage Bus Inputs</td>
<td>91</td>
</tr>
<tr>
<td>Current Transformer Inputs</td>
<td>92</td>
</tr>
<tr>
<td>Analog Measurement</td>
<td>92</td>
</tr>
<tr>
<td>Calibration</td>
<td>92</td>
</tr>
<tr>
<td>Analysis</td>
<td>92</td>
</tr>
<tr>
<td>Features</td>
<td>93</td>
</tr>
<tr>
<td>Index</td>
<td>94</td>
</tr>
</tbody>
</table>
Preface

Important safety information

General Safety Precautions

Note: The general safety information presented here is for both operating and service personnel. Specific warnings and cautions will be found throughout this manual where they apply.

Note: If the equipment is used in any manner not specified by Baker Instrument Company, an SKF Group Company, the safety protection provided by the equipment may be impaired.

Safety term definition

DANGER: Indicates a hazardous situation, which, if not avoided, will result in death or serious injury.

WARNING: Indicates a hazardous situation, which, if not avoided, could result in death or serious injury.

CAUTION: Indicates a hazardous situation, which, if not avoided, could result in minor or moderate injury.

NOTICE: This signal word addresses practices that could result in property damage but not personal injury.

Symbols/Labels on equipment

Voltage level warning. 1000 V Maximum input

Other Important Safety Warnings

1) **Warning**: Do not operate the instrument with front door open. When the instrument door is open, the instrument is not water resistant and should not be operated. Do not allow the opened instrument to be exposed to water. Water in contact with the interior of the instrument compromises protection features and could result in serious injury or death.

2) **Warning**: Because of the voltages present, testing should be conducted only by trained personnel, and adequate safety precautions must be followed to minimize the risk of serious injury, death, or property damage.

3) **Warning**: Because of the dangerous currents, voltages, and forces encountered when operating, testing or repairing rotating equipment, safety precautions must be taken for all tests. Follow all safety precautions in this manual and required by your employer. Due to the wide diversity of machine applications, it is impossible to list all general safety precautions. However, this manual includes special safety precautions applicable to the use of the NetEP.

4) **NOTICE**: The maximum rating of the NetEP is 1000 V. Under no circumstances connect the voltage sensing circuit to higher voltage levels. Doing so will cause severe damage to instrument.
Operational safety warnings
Baker Instrument Company, an SKF Group Company, recommends that the operator comply with the following safety precautions:

1) Comply with all your facility’s safety practices at all times.
2) Ensure physical setup does not interfere with your facility’s current or intended operation.

Additionally, these safety precautions must be followed, otherwise dangerous shock hazards may exist:

1) Use whatever safety equipment required by your organization including eye protection, high voltage gloves, arc-flash rated masks, hoods and any required PPC. Prior to opening any MCC (Motor Control Cabinet), ensure that appropriate arc-flash protection clothing is worn.
2) Ensure that appropriate lockout / tag-out procedures are properly understood and implemented by all personnel.
3) Do not touch the connections, PT’s, CT’s or any component under test while a test is being made.
4) This product is grounded through the grounding conductor of the power input.
5) During repairs, do not substitute any parts. Use only factory-supplied parts.
6) This instrument is NOT approved for use in an explosive environment.

CE Declaration of conformity
To be supplied by Intertek based on their testing

2004/108/EC for EMC
EN61326 for equipment type

Additional regulatory information
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in its installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the product manual, may cause harmful interference to radio communications. If this equipment does cause harmful interference, the user will be required to correct the interference.

Information furnished in this manual is believed to be accurate and reliable. However, Baker/SKF, assumes no responsibility for the use of such information or for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of Baker/SKF.

Technical assistance/authorized service centers
Should either software or hardware assistance be required during the warranty period, please call Baker/SKF at (970) 282-1200 or toll free at (800) 752-8272. For authorized service centers please visit our website at www.bakerinst.com. Service centers are marked with a double asterisk.
System Description

The SKF Online Motor Analysis System NetEP is an Ethernet connected electric motor monitoring system. It is a permanently mounted system, capable of monitoring up to 32 motors on seven different voltage busses. The system gathers data from the voltages and currents flowing to the motor. This data is used to determine key performance levels as well as to generate spectral measurements. Several alarms levels can be set to identify measurements that are out of range and alert the user.

Being a network connected system, the measurements, alarms and configuration can be viewed using the provided desktop software from any computer connected to the network. Authorized users can also modify the monitoring configuration from the desktop software. The NetEP runs continuously, thus motors can be monitored 24 hours a day, 7 days a week.

The system provides an at a glance summary displays that show the overall status of all monitored machines. This is provided even across multiple NetEP’s at multiple locations, making remote monitoring of all motors from any location possible.

A central data server, running Microsoft SQL Server or Microsoft SQL Express, collects data from the unit. The server software also runs on the central data server, and is capable of collecting data from multiple NetEP’s. This allows data viewing from multiple motors, factories, NetEP’s at one time through the desktop software.

Hardware overview

The system connects to 3 measurement CT’s (current transformers) per motor. The CT’s should be within 150 feet of the NetEP unit. CT signals are run on standard CAT V networking cable for easy installation and cable routing. CT’s come in four current ratings, 5 A, 50 A, 200 A and 600 A. The CT’s are available in either solid core or split core configurations. For best performance, actual steady state motor currents should be between 10% and 90% of the CT current rating. CT performance must be calibrated for accurate measurements. Using the optional NetEP calibration kit, the CT’s can be calibrated at the installation site. CT calibration is also available as a service from Baker/SKF.

The unit requires 110 V – 240 V 50/60 Hz power for its internal measurement circuitry and a standard wired LAN connection is also required.

NOTICE: Voltage Busses up to 1,000 V can be connected to the system. It is strongly recommended that external safety disconnects be provided for each voltage buss connected to the NetEP. To avoid potential hazards voltage busses must be de-energized before opening the NetEP door. The NetEP does not have any internal disconnect mechanism for the Voltage Busses being measured.

Software overview
system consists of three software programs; the device software, the server software and the
desktop software (SKF Motor Analysis Surveyor).
The device software is the embedded software running on the computer in the system box. It is responsible for the scheduling and acquisition of data from the hardware, and for communicating that data to the server software via the wired LAN connection. The device software requires little or no user input after the initial installation and configuration of the NetEP system. During installation, the hardware calibration and verification of connections to the CT’s and Voltage Busses are done using the device software. This requires that a monitor and keyboard be connected to the NetEP device during installation.

To view data, alarms, trends and spectra, the SKF Motor Analysis Surveyor software is used. This software runs on a Windows® based system, and a network connection is required. The Surveyor software is the primary system interface. All motor, measurement and alarm limits are set here. The Surveyor software contains several different views suitable for detailed configuration of the unit as well as at a glance machine status. It also includes detailed data analysis displays. The Surveyor software retrieves data from the server software to populate its displays and to perform analysis.

The server software manages the communication and data storage for the NetEP’s connected to it. The server software should run on a moderate to high performance Windows® workstation, with good network connectivity, and preferably UPS power. Microsoft® SQL Server or SQL Express is required for data storage by the server software. Like the device software, the desktop software also accesses the server software. Some configuration is required through the server software interface. The server hardware, software and database are also available as a service from Baker/SKF.

The NetEP software configuration from the factory is such that the device software will automatically find and connect to the server software, provided they are on the same subnet. Surveyor software requires configuration with the IP address of the server software to allow connection. The NetEP system administrator can assign different levels of capability (ie: view only, edit etc) to each user of the system.

Network configuration

The system software program uses Standard Ethernet configurations and protocols.

Factory default networking settings (changeable by system administrator).

- NetEP device software: TCP/IP protocol using port 1100, or UDP on port 1150. IP Address DHCP.
- NetEP server software: TCP/IP protocol using port 1100, or UDP on port 1150. A static IP Address is recommended.
- SKF Motor Analysis Surveyor: TCP/IP protocol using port 1100 or UDP on port 1150. IP Address DHCP.

Configuration of the three software programs is simplified if the Device, Server and Surveyor are on the same subnet. If they are not, configuration of firewalls to allow connection and communication between the software programs is required. Without this connectivity, software will not operate correctly.
2
Software Configuration

See Appendix A for reference material on installing MS SQL Server and MS SQL Express. In order to set up the NetEP server installation, MS SQL Server or MS SQL Express must be operational on the computer.

SKF Online Motor Analysis System - NetEP server installation

The NetEP server software provides for the storage of data from the NetEP. The NetEP server also is the communication link between the desktop client and the NetEP. As such, the computer running the NetEP software has the following requirements:

- Greater than 2 GHz Pentium, Core2 Duo or equivalent
- Greater than 2 GB RAM
- Greater than 10 GB free disc space per NetEP connected
- Windows XP, Vista, 7 or Server 2003
- 10/100 LAN connection
- Microsoft SQL or SQL Express
- Static IP Address
- UPS recommended

The computer running the NetEP Server software must be continuously operational. If this computer is off for more than 30 minutes, the NetEP device may run out of storage space and; therefore, discard data. If this guaranteed operation is unfeasible, there is a NetEP Server Service available from Baker/SKF that meets this requirement. This server service is greater than 99.9 percent availability. Also note, when the computer running the NetEP server software is unavailable, the SKF Motor Condition Surveyor software will not be able to view NetEP device data, nor be able to change any device settings.

The first step for the installation of the NetEP Server software is to install the database to be used. This database can be either Microsoft SQL or Microsoft SQL Express. Knowledge of the path to the database is required during the installation of the NetEP server software.

Installation procedure

1) To install the NetEP server software, locate the NetEP server CD, and insert it into the computer CD drive.
2) When prompted, provide the path to the storage database to be used to house the motor data gathered by the NetEP.
3) Once the NetEP server software has loaded, if appropriate change the name of the NetEP server, set the number of NetEP devices that can connect to this server, and change the Port used to communicate with the NetEP Device.
Suggested network topology

The graphic below shows the suggested network topology for the NetEP devices and NetEP Server, the ports required for operation, and the expected data rates. Consult your organization’s IT group to properly set up the network.

![Network topology diagram](image)

Fig 2-1: Network topology diagram

Configure your Server

1) Go to Start->Run->Surveyor and Launch the Surveyor Application.
2) If the software is not activated it will ask you to activate your software.
3) Go to Tools->NetEP Server and click **Settings**.
 i. This option is only available if you are logged on to Windows as an Administrator, or for Vista/7 the software is being run in administrator mode.
4) Select the Servers tab.
5) Click **Add** to create a new server.
6) Give your server a name (or use the default name).
7) Set the TCP port that your server will use to communicate with your NetEP(s).
 i. This port must be unblocked (for TCP) on any firewalls or routers that are in-between the NetEP and your server.
8) If you want your NetEP(s) to automatically detect and configure their own network settings place a check in Broadcast Connection Information, select a port to broadcast on and a time interval to do the broadcast.
 i. This port must be unblocked (for UDP) on any firewalls that are in-between the NetEp and your server.
 ii. This setting will only work if the NetEp(s) exist on the same subnet. If your NetEp(s) are not on the same subnet you should uncheck this box, and you will need to manually configure them.
9) Configure the database server settings for your remote client (NetEp)
10) These are the settings the NetEp will use to connect to your database.
11) If your server require different setting to connect to the database configure them in the **Local Database Server Settings**, otherwise leave it set to **Same as Remote**.
12) Click **Browse** and select the database that you would like this server to use.

NetEP Device Software is factory installed on the instrument. No changes in the configuration are required, except the entry of the NetEP Server IP address if the broadcast beacon is disabled and the Server is on a different subnet than the NetEP Device. Upgrades and new revisions of NetEP device software are included in the NetEP server software, and automatically install on the NetEP device when the NetEP Server software is updated. Should the NetEP device become corrupted and need reloading, please contact Baker/SKF for assistance.

Configure network settings for the NetEP device

1) Click on Start -> All Programs->Surveyor -> Tools-> NetEP Configuration Tool and the following form will appear.
2) Click on Tools -> Network Configuration menu item, the Server Settings dialog will be displayed.

3) If the server is configured to broadcast connection information then check the automatic server broadcast checkbox and fill in the broadcast Port with the same port number from the server. If the server is not broadcasting connection settings then uncheck automatic server broadcast checkbox, enter the Server IP Address and port to connect to.

4) Accept the defaults for delays and connection time outs. These should only be changed if having connection drops.

5) Click OK to save the information to the device settings.

SKF Motor Condition Surveyor software interface

Database setup

The NetEP uses a database to store measurement results and other information needed for the monitoring of motors. Each NetEP device is mapped to a database in which its results are saved.

To create a database, login to the Surveyor software. On the File menu, select New, then Database. The following dialog appears.

![Create Sql database](image)

In the Server field, select the IP address of the computer which is running the NetEP Server software using the down arrow in the Server field. Then enter the name for the new database to create and click on the OK button.

If a new NetEP server connection needs to be created (for example, during the initial installation of the NetEP system), click on the Create New Server Connection icon to bring up the following screen.

![Connection settings](image)

Type the Server Name (IP address) of the computer which is running the NetEP Server software in the Server Name field (the search icon can also be used to search for available servers). We recommend setting the port to 1433 and using SQL Server Authentication. Other ports and/or Windows authentication can be used, however expertise in network administration is recommended for utilizing these.

Clicking on the tools icon in the Create Sql Database window, brings up the following screen which allows you to change server connection settings once a connection is established. We recommend using the default ports and authentication modes unless experienced in network configuration and administration.
On this screen test the connection to the server by clicking the **Test Connection** button. This is useful for verifying that the Server Name (address), port, Username and Password are correct. Changing the port and authentication mode is discouraged unless you have experience in network configuration.

Once a database is created, a NetEP device needs to be mapped to the database. This tells the NetEP device which database to use to store its data. This is accomplished in the NetEP Surveyor software by selecting the Server Tree tab and right clicking on the database icon, and choosing the **Map** menu item. This will display all the NetEP devices connected to the server. Select the NetEP device that you want to use as the data source for this database.

Database Management

User Permissions

The Surveyor has four user roles for adding user permission levels of the software. In order to assign these roles to various users, an initial NetEP database must be created by a SQL system administrator account using Surveyor. The first time Surveyor creates a database user roles are created. At this time user logins can be assigned specific roles through SQL Server Management Studio. SQL Server Management Studio is a tool included with Microsoft SQL Server 2005 and later for configuring and managing Microsoft SQL Server. Below is a table of the user roles and the permissions assigned to each role.

<table>
<thead>
<tr>
<th>Folders</th>
<th>User Role</th>
<th>Administrator</th>
<th>Analyst</th>
<th>User</th>
<th>Guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage Buss</th>
<th>User Role</th>
<th>Administrator</th>
<th>Analyst</th>
<th>User</th>
<th>Guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map/Un-map</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machines</th>
<th>User Role</th>
<th>Administrator</th>
<th>Analyst</th>
<th>User</th>
<th>Guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map/Un-map</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarms</th>
<th>User Role</th>
<th>Administrator</th>
<th>Analyst</th>
<th>User</th>
<th>Guest</th>
</tr>
</thead>
</table>
Now that a connection with the NetEP server has been established, a database has been created, and a NetEP Device has been mapped to the database, we can create and map the motors to be monitored.

Select the Location Tree tab on the main Surveyor screen. This will allow motors to be organized in a logical order using folders. Right click on the database icon in the Location Tree and select the New menu item. The choices are: Folder or Voltage Buss. Folders are optional and can have other folders beneath them. Folders are a useful way of organizing the motors to be monitored. Beneath folders can be another folder or a Voltage Bus. Beneath a Voltage Bus are the motors connected to that bus. An example of using folders to organize motors is shown below.

Once a voltage bus and motor have been created, they must be mapped to a NetEP Device channel before monitoring can begin. To map a voltage bus or motor, select the Server Tree tab. This tab is organized with the databases at the top of the tree, with NetEP devices mapped to the database, Voltage busses mapped to the NetEP, and motors mapped to the voltage bus. The mapping consists of selecting the voltage or motor channel of the NetEP to which the voltage bus or motor is physically wired. For the example above, the following mapping options are shown when right clicking the NetEP icon, selecting Map Voltage Bus and the Voltage Bus icon, selecting Map AC Machine.

Fig 3-4: Database

<table>
<thead>
<tr>
<th>Edit Alarm Value</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Alarm</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Disable Alarm</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Acknowledge Alarm</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>View Data</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Add/Edit/Delete User</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create Database</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Notice that in the drop down menu for the Voltage Bus Channel and the CT input Channel, only the available channels are shown. That is, channels that are already in use are not shown. The maximum number of channels available depends on the specific configuration of the NetEP purchased.

If a mistake is made mapping voltage busses or motors, in the Server Tree view, right click the voltage bus or motor that was mis-mapped, and select Unmap.

Software interface overview

Login to the SKF Motor Condition Surveyor software. The main screen includes menu items on top of the screen, a Navigation pane to the left, a row of icons that change the view along the top and a large machine information pane.
Navigation pane
The Navigation pane can be turned on or off by clicking on View and then Navigation Pane and it will appear at the left side of the screen. The Navigation pane has two views available in it. The location tree that lists all the motors for a specific location and the server tree, which shows the connections of motors to NetEP’s and NetEP’s to databases. The Location Tree or Server Tree views are selected using the tabs at the bottom of the Navigation pane.

Server tree
If the server tree needs to be viewed, click on View and then Server Tree and it will appear at the bottom of the screen along side the Location Tree. This setting remains on until the screen is toggled.

Right Click Menu
The Navigation pane has several right mouse-click menus that offer capabilities and properties about motors, voltage busses and the database. This menu includes mapping and un-mapping of voltage busses, closing a database, exporting data via a .xml file, expanding the motor tree and properties of the selected motor.

On the root directory (database name) or Server level of the motor tree, the right-click menu displays database activities such:

− New: Folder, Voltage Buss, or AC Machine
− Performance Log: pops up a grid showing time versus size of database. This tracks the growth of the database data.
− Close Database
− Compact and Repair: Compress data and repair corrupt data.
− Acknowledge All Alarms: This will acknowledge all alarms on all motors connected to this database. This is useful when an event has impacted many motors.
− Export data to .xml format.
The right click menu for the AC machine level of the motor tree contains the following:

- Delete: AC machine.
- Close Database: Close currently open database.
- Export: to .xml file format.
- Properties: shows the AC machine properties.
The name plate information is used in several NetEP calculations, therefore, it is important that the information entered is correct. For example, the NetEP calculates current level %, the name plate current is defined to be 100%. The **Off when Current Level <** box defines the current, in Amps, below which the NetEP assumes the motor is off and no longer collects or saves data for that motor while it is off. When the current level to the motor rises above this level, the NetEP automatically begins gathering data on the motor again.

The manufacturer information is saved for reference only and is not used in NetEP calculations.

On line testing has several parameters the NetEP uses for calculating motor performance. Do not change the default values unless you are certain that the new values are correct.

The Machine parts tab is used to define the bearings used in the motor. Knowing the bearing models allows the NetEP to calculate the bearing frequencies, and place markers in the spectra to locate potential problems with bearing degradation. The name entered here will also be shown on the spectrum marker selector to choose which frequencies on which to place markers.
The Data Filter tab is where the data retention settings for the motor are entered. The default settings are for a server with a 4GB data size limit. This results in an aggressive data filtering set up. If your server database size is larger than 4 GB, the filter settings can be relaxed.

There are 3 levels of data filtering, Short Term, Medium Term and Long term. For each level of data filtering, a start time for that filter is defined in addition to the amount of data to retain of the alarm data, the Time Waveform data, and the Round Robin data.

To help plan your data filtering strategy, some data sizes will be helpful. A time waveform result is approximately 3.2MB each. A time waveform result is generated for each motor approximately once per hour. A round robin result is generated every 10 seconds for each motor and is approximately 2.6 KB each. By default, all alarm data is saved, so be sure that the alarm limits are properly set and motors are not always generating alarms.

Before the Short Term filter start time – in the example above, 12 hours – all data of all types is retained – nothing is deleted.

Once the Short Term filter start time has been passed, data older than this start time is filtered according to the settings selected. In the example above, all data which generates an alarm, regardless of whether it is Time Waveform or Round Robin, is retained. For Time Waveform data which does not generate an alarm, 1 Time Waveform per hour is retained, and for Round Robin data which does not generate an alarm, 3 Round Robin results per hour are retained.

The Medium Term and Long Term filters are set in a similar manner.

In the lower right hand corner of the Surveyor software window, the name of the database being used for the selected motor, the user login name, and the role of the user are displayed. To verify that the data filtering strategy selected is appropriate, monitor the size of the database as shown in the lower right hand corner. If the database is filling too quickly, a more aggressive filter set up may be required. Alternately, a larger capacity database server could also be installed.
Note: The NetEP will detect if the database is getting too full and will automatically start deleting the oldest data if the database has less than 500KB free space left.

Motor status visual notification

Around each motor is a background square that changes color according to motor status. This is based on the limits defined within the alarms tab. Default colors are green for all measurements within limits, blue for a measurement that exceeds the **watch** limit, yellow for a measurement in the **caution** area, red for a measurement in the **warning** area and grey indicates no data on this motor – this would most frequently occur when the motor is turned off.

![Motor status visual notification](image)

If the measurements on a motor exceed the limits defined for that motor, not only will the motor icon background change color, so will the entries above the motor in the tree. Typically, this will mean that the voltage buss, folder and database icons will also change background color. This allows a quick method to determine if any motor is in an alarm condition. To determine which motor has exceeded the test limits, navigate down the tree looking for the motor with the same color background – note that there may be more than one motor, which has exceeded its alarm limits.

Motor information pane

Until a motor is selected, the motor information pane will be blank. Select a motor by double clicking on it in the Navigation pane. A single click will highlight the motor in the tree, but will **not** display the information for that motor – a double click is required. The title at the top of the window will indicate the displayed motor. The motor information pane has tabs both at the top, and often at the bottom of each view. The tabs along the top are for alarms, scheduler, dashboard, voltage/current, time waveforms, and trending. These tabs are discussed in detail in later chapters of this document.

Menu items

Click on **File** in the menu bar to create a new database, folder, voltage buss, or motor, to open or close an existing database, or to exit the program.
The View drop down menu contains refresh, navigation pane and server tree toggle boxes, the machine status grid and properties.

To see the status of all the motors in the databases open on the NetEP, select the Machine Status Grid view. The data grid displays a color-coded box for each monitored motor. This view can be toggled between two views. One view has large boxes and the other has small icons. This allows several hundred motors to be viewed at a glance. Default color coding is Green for all measurements within limit, Blue for a measurement that exceeds the watch limit, Yellow for a measurement in the caution area, Red for a measurement in the warning area. Grey indicates no data on this motor. By placing the mouse pointer in the colored box, a pop up will show the last measured data for that motor. To quickly navigate to the motor, double click on the square or icon in the Motor Status Grid View and the detailed motor results screen for that motor will be opened.
The tools view has two options. Customize and Options. The properties menu offers general options to how often the data is updated. Changing this will impact the performance of the system. Do not change this value without consulting Baker/SKF first. The advanced tab allows the resetting of default settings. The display units selection sets the default units for Torque, though both Nm and ft-lb are available throughout the Surveyor interface.

This menu offers advanced window views and a list of currently open views on the desktop. Some views may be open and not currently visible.
To see detailed results for multiple motors at one time, use the Tile Horizontal selection to get a display line the one below – note that the windows for the different motors need to be open before selecting Tile Horizontal.

Help

This menu contains the user manual in pdf format and an about screen to view what version of software is currently running on the NetEP, iNetEP.

Location Tree

The Location Tree view organizes motors and voltage busses in an intuitive manner. At the top of the tree is the database. Beneath the database, it is recommended that a folder (typically used to describe a location, for example, Plant 17 MCC 3) be created. Beneath the folder, create a voltage buss describing the buss and its connected motors. Finally, beneath the buss, create motors. Be sure to create motors that are connected to their specific voltage buss in the location tree. The location tree is not limited in the number of created voltage busses or motors. Use the location tree
to organize motors and busses without regard to NetEP capacity.

Created items on the location tree are automatically saved to the database. There is no menu item to save the database.

Server Tree
The Server tree view of the Navigation pane is where mapping occurs of motors and voltage busses to NetEP devices. Click the **Server Tree** tab at the bottom of the Navigation pane to switch to the Server Tree view. As in the location tree, the database is located at the top. Right click on the database to add or map a NetEP device. A database can have multiple NetEP mapped to it. The number of NetEP which can be mapped to a database is set in the server configuration. Right click on the NetEP device to map a voltage buss to a measurement channel (1 through 7) on the device. Only available channels are shown for mapping. Right click on a voltage buss to map a motor to a voltage buss. As part of the voltage buss and motor mapping, the voltage or current channel used in the NetEP is selected.

Graph Tools
When in a graph (time waveform display, torque versus time, spectrum or trending in Use Dates mode), there are many options available to help inspect the graph.

Zoom: Click the mouse and drag the cursor to define the area to which to zoom. Dragging the cursor causes a dotted line to appear showing the area that will be displayed when the mouse button is released.

Zoom X-axis only: Click the left mouse button and drag the cursor straight parallel to the X-axis. The dotted lines showing the new display area will shift to vertical lines showing the portion of the X axis that will be zoomed to.

Zoom Y-axis only: Click the left mouse button and drag the cursor straight parallel to the Y-axis. The dotted lines showing the new display area will shift to horizontal lines showing the portion of the zoomed in Y-axis.

Cancel a Zoom: with the left mouse button still depressed, hit the escape key

To undo a Zoom: press the spacebar

Undo all Zoom: Press the Control and Spacebar keys simultaneously

Delta cursor: By default, the delta cursor has a green background. Click the left mouse button and drag the Delta cursor to the second point. Text will display next to the cursor showing the X and Y value changes between the two points.
Chapter 4
Parameter definitions & uses in diagnosing machine faults

Parameter definitions
The NetEP does two types of data acquisitions for monitored motors: Round Robin acquisition and Time Waveform acquisition. Both of these data acquisition types are automatically performed by the NetEP; there are no user adjustable settings for either acquisition type. The Round Robin acquisition is a fast measurement of motor voltages and currents. In a typical installation, every motor will have a Round Robin data acquisition taken on it approximately every 15 seconds. The Round Robin data is useful for monitoring overall power quality data as well as detecting momentary fluctuations in power or motor performance. The Time Waveform acquisition takes place approximately once per hour for each motor. This is an extended data acquisition that provides spectrum data and other machine parameters. The list of parameters measured or calculated from each measurement type is shown below.

Round Robin Measurements:

Voltages:
- Peak Voltage [LN - V]
- V RMS Avg. [LL - V]
- V RMS Avg. [LN - V]
- VA Peak [V]
- VA RMS[V]
- VAB Angle [deg]
- VAB RMS [V]
- VB Angle [deg]
- VB Peak [V]
- VB RMS[V]
- VBC Angle [deg]
- VBC RMS [V]
- VC Angle [deg]
- VC Peak [V]
- VC RMS [V]
- VCA Angle [deg]
- VCA RMS [V]
- Voltage Level [%]
- Voltage Unbalance [%]
- VUF [%]

Currents:
- Current Level [%]
- Current Unbalance [%]
- Peak Current [A]
- I Avg RMS [A]
- IA Angle [deg]
- IA Peak [A]
- IA RMS [A]
- IB Angle [deg]
- IB Peak [A]
- IB RMS [A]
- IC Angle [deg]
Parameter definitions & uses in diagnosing machine faults

- IC Peak [A]
- IC RMS[A]

Power quality
- c.f. I Avg
- c.f. Ia
- c.f. Ib
- c.f. Ic
- c.f. V Avg.
- c.f. Va
- c.f. Vb
- c.f. Vc
- Displ. PF a
- Displ. PF Avg.
- Displ. PF b
- Displ. PF c
- Harm. PF Avg.
- Harm. PFa
- Harm. PFb
- Harm. PFc
- PF Avg
- PFa
- PFB
- PFc
- V over F

Power
- App. Power a [kVA]
- App. Power b [kVA]
- App. Power c [kVA]
- App. Power [kVA]
- Frequency [Hz]
- Input Power [kW]
- Power a [kW]
- Power b [kW]
- Power c [kW]
- Reactive Power a [kVAr]
- Reactive Power b [kVAr]
- Reactive Power c [kVAr]
- Reactive Power [kVAr]
- Z Avg Amp. [Ohms]
- Z Unbalance [%]
- Za Amp. [Ohms]
- Za Ang. [deg]
- Zb Amp. [Ohms]
- Zb Ang. [deg]
- Zc Amp. [Ohms]
- Zc Ang. [deg]

Distortion
- Harmonic Distortion I [%]
- Harmonic Distortion V [%]
Parameter definitions & uses in diagnosing machine faults

- HVF
- HVF A
- HVF B
- HVF C
- Td Ia [%]
- Td Ib [%]
- Td Ic [%]
- Td Va [%]
- Td Vb [%]
- Td Vc [%]
- THDi A [%]
- THDi B [%]
- THDi C [%]
- THDv A [%]
- THDv B [%]
- THDv C [%]
- Total Distortion V [%]
- Total Distortion I [%]

Components (symmetrical components)
- Ia1 Amp.[A]
- Ia1 Phase [deg.]
- Ia2 Amp.[A]
- Ia2 Phase [deg.]
- Va1 Amp. [V]
- Va1 Phase [deg.]
- Va2 Amp. [V]
- Va2 Phase [deg]
- Za1 Amp. [Ohms]
- Za1 Phase [deg.]
- Za2 Amp. [Ohms]
- Za2 Phase [deg.]

Machine
- NEMA derate factor

Time waveform acquisitions
In addition to all the parameters listed above, time waveform acquisitions include:
- Voltage Spectrum
- Current Spectrum
- Torque Spectrum
- Voltage Time Waveform
- Current Time Waveform
- Torque Time Waveform
- Air Gap Torque [ft-lb]
- Air Gap Torque [Nm]
- Eff. Service Factor
- Efficiency [%]
- Load [%]
- Load [hp]
- Load [kW]
- Rotor Bar Sideband [-db]
Parameter definitions & uses in diagnosing machine faults

- Rotor Sideband Freq. [Hz]
- Speed [RPM]
- Torque [ft-lb]
- Torque [Nm]
- Torque Swing [%]

Components
Symmetrical Components are useful for troubleshooting asymmetries in a machine or power system. For machines, these are typically disconnected coil (cut out of the circuit), contact resistance in the circuit (not typical as these tend to burn out quickly), repair errors (inconsistent wire gauge or turn count, connection, reversed coil) resulting in asymmetries.

Symmetrical Components, describe the voltages and currents and impedance in a three phase power system. They can be decomposed into three phasors or components:

- the positive sequence phasor/component (V1, I1, Z1)
- the negative sequence phasor/component (V2, I2, Z2)
- the zero sequence phasor/component (V0, I0, Z0)

The positive sequence phasor or component works to rotate the shaft of the motor in the intended direction. Work performed by the positive sequence component has to overcome the negative sequence component before any real work can be done.

The negative sequence phasor would rotate a motor in the opposite direction that the shaft turns. Therefore, negative sequence components/phasors works against the positive component/phasor. A negative sequence component works to slow down the shaft as a brake would. All of this energy ends up as heat in the motor and is not good.

The zero sequence component/phasor is a ground current. In a balanced three phase system, the negative sequence term is zero. The NetEP assumes the phasor do not have a zero sequence.

Measurements available
I1: Positive sequence current amplitude
I1 Phase: Positive sequence current phase
I2: Negative sequence current amplitude
I2 Phase: Negative sequence current phase
V1: Positive sequence voltage amplitude
V1 Phase: Positive sequence voltage phase
V2: Negative sequence voltage amplitude
V2 Phase: Negative sequence voltage phase
Z1: Positive sequence impedance magnitude
Z1 Phase: Positive sequence impedance phase
Z2: Negative sequence impedance magnitude
Z2 Phase: Negative sequence impedance phase
Current
The current measurements are of each single-phase current – in RMS and peak. Limits should be set by using the nameplate data of the stator current. The aggregate Peak current, Avg RMS current and Avg RMS as a percentage of nameplate are also measured.

Too much current can overstress particular phases in the motor. The over current test determines if your motor might be drawing more than its rated current on one or more phases, causing excessive heat in the motor and decreasing the life of the insulation.

The nameplate information for every motor includes current data. The over current test compares the highest phases’ current with the rated nameplate current and identifies overheating for that particular winding.

A typical thermal assessment for a winding examines a particular phase’s current. The current generates I^2R losses, thus creating heat. Although not the entire cause for heat in the motor, I^2R losses are usually the main contributor.

Possible causes of high current:

Overloading: Will typically raise the current levels above nameplate.

Under-voltage: Every machine will either deliver the load required, or stall. The operating speed is mainly set by the operating frequency, and the load defines the required torque for that operating speed. The machine has to deliver the required torque that is now defined by frequency, and resulting operating speed. In order to deliver torque, the machine requires input power delivered by the voltage buss. If the voltage buss is low, then the required input power will have to be created by a higher current level.

Error in connection of machine: Errors connecting the machine will dramatically lower the inductance and resistance seen by the energized leads. Errors in connection will cause dramatic over currents, even when the machine is running with no load – literally free spinning. This error typically destroys the stators insulation health within a short time frame.

Mistake in machine rewinding: Mistakes in rewinding will change the properties of the machine. In this instance over currents is one of the possible outcomes.

Severe rotor cage damage: Rotor cage deterioration lessens the effectiveness of the rotor to generate torque with slip. The torque required by the load has then to be provided with a higher operating slip, which in turn causes higher rotor currents. These are then reflected as higher current levels in the stator.

Current Unbalance: Current Unbalance is measured in percentage. For machines with >50% load, this value is typically smaller than an eighth of the percentage voltage unbalance.

Unbalanced currents are frequently caused by mildly unbalanced voltages. A common rule of thumb is that voltage unbalance can be the cause of up to eight times larger current unbalances. Machines will also show very large current unbalances under very light, or no load conditions – even when driven by a balanced voltage. These current unbalances are common in healthy machines. These current unbalances vanish rapidly when the machine is loaded.

NEMA defines current unbalance according to the following equation:
Parameter definitions & uses in diagnosing machine faults

\[\% I_{\text{imbal}} = 100\% \frac{I_{\text{Avg. RMS}} - \max\{(I_A - I_B) : (I_B - I_C) : (I_A - I_C)\}}{I_{\text{Avg. RMS}}} \]

Where \(I_A, I_B, \) and \(I_C \) are the RMS values of the currents of the 3 phases, and \(I_{\text{Avg. RMS}} \) is their average.

Another way to analyze unbalances is via the negative to positive sequence ratio. This is the preferred method in the IEC standards.

Current Level [%]: \(I_{\text{avg RMS}} \) as a percentage of full load where full load is defined from the nameplate

I Avg RMS: the average value of all three phases of current in RMS terms (RMS = root mean square).

Peak Current: the maximum current observed in any phase

Current Unbalance [%]: A measurement of the unbalance of the three currents supplying the motor. This is a NEMA type unbalance where the ratio is the maximum deviation from average divided by the average.

For each phase, A, B and C, the following measurements are provided:

I Angle (degrees): the phase angle of the phase current. All phase angle values for all measurements are in respect to the A phase voltage.

I RMS: the RMS value of the phase current. This is the current a digital volt meter would display when measuring the signal from the A phase CT.

I Peak: the peak current of the phase. The peak current is the actual maximum value of current observed by the CT and is the peak amplitude an oscilloscope would display when connected to the CT.

Distortion

Distortion measurements quantify how different a signal is compared to a perfect sine wave. AC rotating machinery works best when powered by a pure sine wave. Any power that is delivered to a motor that is not a pure sine wave creates heat in the motor. Therefore; the lower the distortion the better.

Distortion can arise from several different sources. For example, upstream transformers can saturate and warp the sine wave along with variable frequency drives (VFD’s) creating noise on a voltage bus.

Total distortion (Td): is a ratio of the amount of a signal that is not in the fundamental frequency to the fundamental signal (either 50Hz or 60Hz). So the Td is a ratio of everything but the fundamental to the fundamental.

Total harmonic distortion (THD): is a ratio of the harmonics of the fundamental to the fundamental itself. Harmonics of 60Hz are 120Hz, 180Hz, 240Hz, etc. THD is very different from total distortion (Td), because Td will sum up all the frequencies in a signal and compare the sum to the fundamental, while the THD will just sum up the harmonic frequencies and compare the sum to the fundamental.
For example: a transformer with a phase saturating will cause the current in the saturated phase to have many harmonics of 60Hz. Therefore THD will be high. Td will also be high because Td will also sum up the signal at the harmonics of 60Hz as well as all other frequencies. Secondly consider a noisy VFD on a voltage bus. The THD of the bus voltage can be low, but the Td can be very high, all because the noise the VFD makes is not always at the harmonics of 60Hz.

Harmonic voltage factor (HVF): is widely used to de-rate the available power that should be taken from the motor without damaging the motor in the process. The Harmonic Voltage Factor is a weighted average of the odd harmonics of a voltage, except those harmonic with orders divisible by three. Specifically, HVF is

\[\sqrt{\frac{1}{n}\sum_{n=5}^{\infty} \frac{V_n^2}{n}} \]

Where:
- \(n \) = order of odd harmonic except those divisible by three
- \(V_n \) = the voltage of the nth order harmonic. Again, harmonics eventually end up as heat and are not good for motors. As such, NEMA has derating curves for motors based upon the HVF.

In deriving the HVF curve in Fig 1, NEMA assumes the only harmonics present are those included in the weighted average above. Specifically, any unbalances or other harmonics are not significantly contributing to the de-rating factor.

Aggregate harmonics measurements are:
- Harmonic Distortion I [%]: The average of the THD for all three phases of current.
- Harmonic Distortion V [%]: The average of the THD for all three phases of voltage.
- HVF: Harmonic Voltage Factor. The average of the HVF for all three voltage phases.
- Total Distortion V [%]: The average of all the distortion in the three phases of voltage.
- Total Distortion I [%]: The average of all the distortion in the three phases of current.

For each phase, A, B and C, the following measurements are provided:
- HVF: Harmonic Voltage Factor for each phase.
- Td I [%]: Total Distortion, in percent, of each phase current.
- Td V [%]: Total distortion, in percent, of each phase voltage.
- THDi [%]: Total harmonic distortion of each phase current.
- THDv [%]: Total harmonic distortion of each phase voltage.
Dependencies of the harmonic data
If harmonics or noise sources are present in the voltage and current signals, the values listed above will increase. Using the transformer example above, an upstream transformer with a saturated phase will have increases in all of the distortion variables. With the measurements of all the phases and currents available, the offending phase can be identified.

Possible causes: THD I or Td I - saturating the iron in the motor. The motor being incorrectly connected to an excessive voltage level can cause this or if the motor has multiple voltage inputs the wrong voltage leads were connected to the voltage bus.

(Excluding VFD’s) THD V, Td V – saturating transformer upstream. Another possible cause is if on the same bus, there are a high level of non linear loads (arc furnace, power electronics).

Machine data
The machine data measurements give key data regarding the machine load, efficiency, speed, rotor bar condition and de-rating.
Load is measured and reported in KW, HP and output Torque (both in NM and Ft–Lbs).

Load %: Expresses the delivered power of the motor to the name plate output power. 100% is a fully loaded motor while 20% is a lightly loaded motor.

Load KW: The power output of the motor expressed in KW

Load HP: The output power of the motor expressed in HP.

Air Gap Torque: is formed by the interaction of the magnetic flux in the gap and the current flowing in the rotor bars. The air gap torque is similar to the shaft torque, the difference being the friction & windage losses of the rotor and bearings is included in Air Gap Torque, but not in the shaft torque.

Torque: The shaft torque. Very close to Air Gap Torque but reduced by friction and windage losses. See section on Torque for more details.

Effective Service Factor: Divides the estimated percentage load into the NEMA de-rating factor. The service factor that a motor should be running at based on all the de-ratings caused by unbalanced currents, over/under voltages, harmonics, etc. It identifies how close the motor is operating to its effective service factor. The service factor test predicts heat-based deterioration and provides an accurate thermal assessment of the motor.

Efficiency: Estimates the efficiency (the ratio of the electrical power supplying the motor to the mechanical output power of the motor) of the motor under its particular operation conditions.

Poor motor performance displays reasons for stress in the motor. Excessive heat generated by the motor performance will destroy the insulation system causing premature electric motor failure. Properly diagnosed motor performance issues can either be avoided by correcting the root cause to the stress, or mitigates so future motor operation does not need to change.

Based on the measurements of voltage and current supplying a motor, the amount of shaft power the motor is producing is found, as well as how effectively the motor is converting electrical energy into mechanical energy. Any deviations from the norm can be used to de-rate the motor.

NEMA Derating: how much the full load of the motor should be de-rated based on current unbalances.
Rotor Freq [Hz]: the frequency where rotor bar frequencies will appear in current spectrum. For example: a 1780 RPM 4 pole motor has a slip frequency of 20 RPM or 0.33Hz. Broken rotor bars show up at the fundamental frequency (60Hz) minus slip (0.33Hz) = 59.67Hz.

Rotor Side Band [dB]: In spectrum plots, the difference between the fundamental peak and the side band peak caused by broken rotor bars. In the current spectrum, broken rotor bars peaks show up at the Rotor Freq (above example) which is very near the fundamental. In the torque spectrum, the broken rotor bar peak shows up at the slip frequency (0.33Hz in this example) very near zero frequency.

Speed [RPM]: the shaft speed in revolutions per minute.

Power data
Using the voltage and current measurements, the following list of power properties can be determined. Real power, apparent power, reactive power can be found as well as the power factor (PF). Real, reactive, and apparent powers are related to each other via the PF.

Apparent power = 3*I avg rms*V avg rms (where V avg rms is with respect to ground - not line to line)
Real power = (apparent power) * PF
Reactive power = (apparent power) * sqrt(1-PF^2)

There are numerous ways to do the calculations for determining real/reactive/apparent power. The formulas below show how it is done with arrays of voltage and current data:

First, calculate the RMS value for all three voltages and currents:

\[
V_{a-rms} = \sqrt{\left(\sum_{i=0}^{NPTS} V_{a(i)}^2 \right) / \text{NPTS}}
\]
\[
V_{b-rms} = \sqrt{\left(\sum_{i=0}^{NPTS} V_{b(i)}^2 \right) / \text{NPTS}}
\]
\[
V_{c-rms} = \sqrt{\left(\sum_{i=0}^{NPTS} V_{c(i)}^2 \right) / \text{NPTS}}
\]
\[
I_{a-rms} = \sqrt{\left(\sum_{i=0}^{NPTS} I_{a(i)}^2 \right) / \text{NPTS}}
\]
\[
I_{b-rms} = \sqrt{\left(\sum_{i=0}^{NPTS} I_{b(i)}^2 \right) / \text{NPTS}}
\]
\[
I_{c-rms} = \sqrt{\left(\sum_{i=0}^{NPTS} I_{c(i)}^2 \right) / \text{NPTS}}
\]

Calculate the apparent power by multiplying the RMS voltages and currents together on a phase by phase basis:

\[
P_{\text{apparent}} = V_{a-rms} * I_{a-rms} + V_{b-rms} * I_{b-rms} + V_{c-rms} * I_{c-rms}
\]

The real power is found by summing the voltages and currents per phase on a point by point basis as shown below:

\[
P_{\text{real}} = \left(\sum_{i=0}^{\text{Index full}} V_{a(i)} * I_{a(i)} + V_{b(i)} * I_{b(i)} + V_{c(i)} * I_{c(i)}\right) \text{The power factor becomes}
\]
$PF = \frac{P_{real}}{P_{apparent}}$

The reactive power becomes

$$P_{reactive} = P_{real} \sqrt{1 - PF^2}$$

Aggregate Power Measurements

- **Frequency (Hz):** The fundamental frequency of the power system (i.e. 50Hz, 60Hz)
- **Input power (KW):** The real electrical input power to the motor
- **Apparent power (kVA):** Total apparent power in kVA. Equals the sum of the three phase’s apparent power.
- **Reactive power (kVAR):** Total reactive power in kVA. Equals the sum of the three phase’s reactive power.
- **Z Avg Amp:** Average of the three phase’s impedance amplitudes
- **Z Unbalance [%]:** Unbalance of the three phase’s impedance amplitudes using the NEMA formula for unbalance.

The following measurements are provided for each phase:

- **Apparent power phase (kVA):** Apparent power of the Phase
- **Reactive power phase (kVAR):** Reactive power of the Phase
- **Real power phase (power):** Real power of Phase A
- **Z Amp:** Phase impedance. Equals V-rms/I-rms.
- **Z Angle:** Phase impedance phase angle. Equals Ang(V)−Ang(I)

Power quality

The nameplate of the motor specifies operating voltage level and frequency for the motor. Under optimal conditions, the motor will operate at 100% voltage level, 0% voltage unbalance and 0% voltage distortion.

Power condition problems particularly deteriorate the motors that are operating at higher load points, or with more frequent cycle times.

Given the high resolution measurements of the three voltages and currents, power quality information can be obtained. Power quality affects how well the motor can convert the electrical input power to mechanical output power. As described in the harmonics section, motors work best when they are powered by a pure sine wave. Unfortunately, power systems and loads can distort the sine wave. The motor can still operate, although the motor becomes less efficient at producing mechanical power.

The motor itself can have an effect on the power system, mainly by the phase angle between the voltage and current drawn to power the motor. This phase angle is represented by the power factor (PF).

On an individual phase basis, the power factor becomes:

$$PF_a = \frac{P_{real-a}}{P_{apparent-a}}$$
Where

\[P_{\text{real-}a} = \left(\frac{1}{\text{Index}_{\text{full-cycles}}} \right)^{\text{Index}_{\text{full-cycles}}} \sum_{i=0}^{\text{Index}_{\text{full-cycles}}} \left[V_a(i) \cdot I_a(i) \right] \]

And

\[P_{\text{apparent-}a} = V_{a-\text{rms}} \cdot I_{a-\text{rms}} \]

A= Phase A. The same formulas are used to determine the power factors, apparent power, and real power of the phase B and phase C.

The displacement power factor and the harmonic power factor are concepts used understand the contributions to the overall power factor provided by the fundamental power frequency and the contribution by the harmonics as shown below:

\[\text{PF} = (\text{DisplacementPF}) \cdot (\text{HarmonicPF}) \]

The displacement power factor is an artifact of the motor and its inductive nature. The harmonic power factor is due to the motor’s inductive nature and the characteristics of the power system. By splitting up the power factor into two pieces, the properties of the motor that are independent of the power system can be observed even though the power system itself is changing.

Another way to view the three power factors is as follows:
- PF = the power factor of the system
- Displacement power factor = the power factor of the fundamental power frequency
- Harmonic power factor = the contribution from all the other frequencies not in the fundamental. HarmonicPF = PF / DispPF.

Crest factor

The crest factor is often used to describe how well a waveform looks like a sinusoid. The definition of Crest Factor (c.f.) is

\[\text{c.f.} = \frac{V_{\text{peak}}}{V_{\text{RMS}}} \]

The table below shows the c.f. various waveforms.
The c.f. is seldom used in the motor industry. However, in the general design of magnetic circuits, the c.f. can prove useful in properly sizing cores given the type of waveform a core will see. For example, the core dimensions will be different if a core sees a square wave with c.f. = 1. If the core sees a sine wave, it’s dimensions can be smaller.

V/F is a ratio of the excitation voltage of the core to the frequency of that excitation. Cores are designed to stay out of saturation at their design voltage and frequency. If the voltage is allowed to increase, the core will saturate and heat up. If the frequency is allowed to slow down, the core will again saturate and heat up. Consider the definition of flux:

\[\Phi = \int V dt \]

If a voltage is present for a long time, the flux \(\Phi \) can become very large and drive the core into saturation. Likewise, if the voltage is too high, the flux can become large and again drive the core into saturation.

Keeping the V/F ratio constant is required to keep core losses minimized. The V/F ratio is of special interest for VFD driven motors where the V/F ratio is a key setting to configure the drive.

Aggregate power quality data:
- **c.f. I Avg:** The average Crest Factor of all three currents.
- **c.f. V Avg:** The average Crest Factor of all three voltage
- **Displ PF Avg:** Average of Phase A,B,C Displacement Power Factors
- **Harm PF Avg:** Average Phase a,B,C Harmonic Power Factors
- **PF Avg:** The average of Phase A,B,C (real or total) Power Factors
- **V over F:** The ratio of Voltage to Frequency.

Data is provided for each phase:
- **c.f. I:** The Crest Factor for each Phase current
- **c.f. V:** The Crest Factor for each Phase voltage
- **Displ PF:** Displacement Power Factor for each Phase
- **Harm PF:** Harmonic Power Factor for each Phase
- **PF:** The (real or total) Power Factor for each Phase
Voltage
Poor voltage conditions will expose the motor to additional unnecessary stress. This stress will be noted, most significantly, in additional heat in the motor, which is the main insulation deterioration mechanism. NEMA and EASA suggest the rule of thumb that for every 10°C of additional heat to the windings, the motor’s insulation life is reduced by half.

Power condition problems usually come from up-stream. The motor is exposed to a stressing voltage condition, which generally is created by the power distribution system (voltage source).

Power condition problems affect the whole voltage bus, and not only the motor that is being currently monitored. Hence, if the problem is fixed, all motors on this bus will benefit, and longer lifetimes can be expected.

Common problems can consist of wrong settings on the supply transformer’s taps, poorly distributed single-phase loads, and overloading (saturating) supply transformers.

Aggregate voltage data:
- **Peak voltage [LN-V]**: The maximum line to neutral voltage of the three phases.
- **V RMS avg [LN-V]**: The average RMS line to neutral voltage
- **V RMS avg [LL-V]**: The average RMS line to line voltage
- **Voltage level [%]**: The percentage of actual voltage to nameplate voltage
- **Voltage unbalance [%]**: The unbalance of the three voltages using the NEMA definition for unbalance.
- **VUF [%]**: Voltage unbalance factor. Equals the ratio of negative sequence voltage and the positive sequence voltage. Similar to the NEMA unbalance, but more accurately reflects the effect of unbalanced amplitudes and phase angles on motor performance.

The following are available for each phase:
- **V Peak [V]**: The peak voltage for the phase (line to neutral)
- **V RMS [V]**: The RMS voltage for phase (line to neutral)
- **V Angle [degrees]**: The angle between two phases line to line voltages
- **V RMS [V]**: The phase to phase line to line voltage in RMS. This is the value measured by a hand held digital volt meter measuring between phases.

Voltage, current and torque spectrum
The spectrum window (available in voltage/current and in torque) is used to analyze the frequency spectra of the three line-neutral voltage waveforms, the three line currents and the torque independently of each other. The current spectrum contains information related to the vibration spectrum of the machine, among other things. It is possible to identify roller-bearing faults by using the Mark Frequencies option. It is also feasible to find deteriorating alignment problems, load unbalances, looseness, eccentricity, and cavitations by analyzing the spectrum.

Note: It has been shown that it is possible to identify the above mentioned faults using the current spectrum. However, the locations in the spectrum that display the signatures of any particular fault differ noticeably from the frequencies where vibration analysts identify particular fault types. This is due to the modulation of the frequency of interest onto the fundamental (50 or 60 Hz). Experience has shown that it is significantly easier to diagnose mechanical faults using the torque spectrum, since the modulation of the fundamental is not present in the torque spectrum. It also needs to be noted that the torque spectrum noise floor is typically almost one decade lower than in the current spectrum.
Rotor Bar
The rotor bar marker identifies electrical asymmetries in the rotor circuit of induction machines of either kind: Squirrel-cage (manufactured or die-cast rotor design), and wound rotor design.

Broken rotor bars can cause excess heat in the motor, decrease efficiency, shorten insulation life, and possibly cause core damage.

The rotor bar marker identifies salient frequency components, which are generated by a degrading rotor cage in the current spectrum. The rotor bar alarm compares the magnitude of the rotor bar frequencies to the limits on the alarm setup page.

Possible root causes of electrical asymmetry:

Cage rotor designs:
- Broken or cracked rotor bars
- Broken or cracked endrings
- Uneven quality of electrical connection between bars and endrings for manufactured cage designs
- Porosity in the squirrel cage of die-cast cages is very common, and frequently represents no problem to the lifetime of the machine.

Wound rotor designs:
- Uneven brush-ring connection quality
- Unbalanced rotor-resistance circuit
- Unbalanced contact resistance in external rotor-circuit shorting bridge.
- A turn-turn short in the rotor-winding

Electrical asymmetries in the rotor circuit create currents at various frequencies. It has been shown that an increasing amount of electrical asymmetry cause these currents' amplitudes to rise.

Literature shows that the particular signature frequencies of the rotor currents depend upon two variables: the fundamental frequency f_N (typically 50Hz or 60Hz for most networks), and the amount of slip s with which the induction machine is being operated.

$$f_T \cdot h, k = f_N \cdot (h + k \cdot 2 \cdot s)$$

Where:
- $h =$ a whole number >0 that represents the electrical harmonics
- $k =$ is a whole number and
- $s =$ is defined as:

$$s = \frac{SySP - OpSp}{SySp}$$

Where:
- $SySP =$ denotes synchronous speed
- $OpSp =$ stands for operating speed.

The most accepted method for the diagnosis of rotor circuit asymmetries during operation by means of electrical measurements is the Lower Side-band method. It compares the current amplitude at one particular frequency ($h=1, k=-1$) of these signature frequencies to the current amplitude at the fundamental frequency.
This particular signature is called the Lower Side-band, because it’s location at the lower side-band of the fundamental current, as can be seen in the following equation:

\[f_{r_{h=1,k=-1}} = f_n (1 - 2 \cdot s) \]

The signature is shown in the spectrum display; a graph that plots the current components vs. frequency. The current components are normalized to the amplitude of the fundamental current, and displayed in dB.

The tallest peak of the currents is the fundamental current – 50 or 60 Hz. The fundamental peak shows one side-band to each side. The automated red-yellow-green-blue assessment made by the software depends upon the amplitude of the current component at the frequency identified by the rotor bar marker compared to the limits defined in the alarm setup page.

The effect of rotor circuit asymmetries can also cause various other symptoms in the frequency domain.

Torque

As an asymmetric rotor feature enters and leaves the magnetized portion of the circuit, it modulates the ability of the rotor to generate torque. Large asymmetries can be seen in the torque graph.

This modulation may not be easily visible in the time domain if other torque-signature frequencies are of significance. If this is the case, switch to the Torque Spectrum where individual frequencies are separated from each other, making a diagnosis easier.

Other harmonics can be used to attempt to verify rotor circuit asymmetries. If present, these amplitude peaks are so low that it is advisable to display the spectrum on a logarithmic scale. This verification is typically done by focusing on one particular h-value, and expecting to see many peaks at various k-values.

The most common h values used are:

- Torque: 6, 12, 18, ...
- Current: 5, 7, 11, 13, 17, 19, ...(odd numbers not divisible by 3)

Deteriorated cages or poor brush-ring contacts decrease the start-up ability of the machine. Trending startup times for a motor-load system can be used as an additional measure to identify potential issues.

Note: The startup ability of a machine is strongly influenced by the voltage level, load torque versus speed profile, and inertia. Any changes to these variables will influence the startup time, potentially causing false positive or false negative assessments.

Rotor asymmetries will also affect the torque-speed curve, decreasing the amount of torque the machine can deliver for every speed. For steady-state operation, this results in higher slip being necessary for producing the same output torque. **Note:** This effect is very slight for mild to moderate amounts of asymmetry, yet it keeps growing disproportionately for incremental increases of asymmetry.

Avoidance/Mitigation
The potential of a false positive diagnosis delivered by any signature-based diagnostic technique should be verified using at least one different, non-related technology. Motor Current Signature Analysis and vibration analysis are the techniques most frequently used together to provide cross-verification of the obtained assessment.

After verification of unacceptably high amounts of rotor circuit asymmetry several action paths open:

Wound rotor induction machine

It may be possible to safely do any of the following while the machine is still in operation: visually inspect, or take thermo-graphic pictures, or take voltage drop readings at the brushes, brush rings, and the external circuit connecting the brushes. Resistance and inductance balance readings of the rotor windings can be taken once the machine is de-energized and in standstill. These types of measurements may help to pin-point the root cause of the lacking symmetry of the rotor circuit that was observed via the stator currents.

Squirrel cage induction machine

Rotor bar and rotor-slot shape: The potential ability of a broken rotor bar to dislodge itself from the rotor slot and wedge itself into the airgap typically influences the action taken when unacceptably high rotor circuit asymmetry has been diagnosed and verified by two separate and independent diagnostic techniques. A machine in which rotor bars have the potential to wander into the airgap is under threat for failure, and is more likely to be scheduled to immediate or prompt corrective action. Conversely, a rotor bar design that is captive in the rotor iron faces a more gradual deterioration, allowing a less intrusive schedule for corrective action.

Diecast or manufactured squirrel cage: A second motor-design based differentiator is whether the squirrel cage is die-cast, or manufactured. The former can have porosity resulting from its manufacture, whereas the latter cannot. Especially for smaller motors, porosity is a common imperfection. It only poses a risk to reliability if it is excessively severe. Examples of symptoms of excessive porosity are: a decrease of the motor’s startup torque capability that falls below the applications’ requirements; excessive slip during steady-state operation that interferes with the application; excessive operating temperature decreasing the insulation’s expected life; excessive vibration, etc.

Diecast squirrel cages can develop broken bars – even though this happens less frequently than for manufactured squirrel cages. It may be advisable to monitor a diecast squirrel cage machine more frequently if high amounts of asymmetry are found the first time it is monitored. If the root cause was porosity, then the amount of asymmetry is unlikely to rise as time goes by – and the period between measurements may be relaxed. If the diagnosed asymmetry rises as time goes by, then a situation of broken bars is likely, requiring corrective action.

Manufactured squirrel cages cannot have porosity. Here, rotor asymmetries are probably due to either a weak electrical joint between rotor bar and end-ring (failure prone in the future), or most likely due to the stress seen by the machine during normal operation. This is worsened by the fact that now the squirrel cage is weaker than it was when it first sustained damage, making it more failure-prone.

Mitigation

Safety, criticality, cost of replacement, cost of repair, down-time to replace, cost of down-time, availability of replacement, redundancy and availability of capital are just some of the circumstances that help define a suitable course of action. The particular failure mode of broken bars may offer the course of action to manage the deterioration for motor designs with captive rotor bars. It is known that broken bars occur most frequently during line-start processes. Some applications are designed with multiple motors in parallel that can be switched on or off depending upon the
momentary requirements. It may be worth assessing whether a captive rotorbar motor diagnosed with broken bars can be left running continuously until the next planned outage, and expose the other motors to the start and stop operation.

Rotor bar test: False assessments

It is good practice to cross-verify any signature-based assessment via a second unrelated technology to rule out false positives, and decrease the risk of false negative assessments.

What are the common sources of false assessments?

1. Current measurements must be done correctly.
2. Power Quality requirements: Constant Voltage level, Constant Frequency, low noise floor.
3. The machine must be running with sufficient slip.
4. Load level must be sufficiently constant.
5. Assessment needs to not be influenced by possible natural frequencies of the motor–load system.
6. Speed assessment must be correct.

1) Current measurements must be done correctly.

a) Ensure that current measurements are valid. There is no overloading, no under-voltage conditions, if the motor has just been installed (or re-installed) there are no errors in connection of machine, and if the motor has been rewound, there are no mistakes in machine rewinding.

2) Power quality requirements: Constant voltage level, constant frequency, noise floor.

a) The determination of the rotor bar frequency is based upon the knowledge of slip, which depends of synchronous speed and operating speed. Both these numbers need to be correctly known in the software to have a properly calculated rotor bar frequency.

b) The rotor bar assessment is done on a spectrum measurement. The analysis of this spectrum can only be valid if steady-state conditions are met. Changes in voltage level or in frequency directly affect the operating speed of an induction machine, hence breaking the requirement of steady-state speed during the time waveform acquisition, typically 240 seconds.

c) Ensure that the noise floor of the current spectrum is sufficiently low (20 dB or more) to allow sufficient separation from the current spectrum to the rotor bar limits.

Note: A significant number of applications exist where lowering the noise floor sufficiently may be hard to accomplish. Examples: Crushers, conveyor belts, and pulpers.

d) Insufficient separation is the source of false positive assessments.

e) Use the trending page to examine data of sufficient length (~10 minutes) for gaining a good understanding of the application’s power quality. Look at the V(t) and f(t) traces and ensure that they are a solid (<1% variation) constant. If this requirement is not met, then the data is known to be invalid for rotor circuit asymmetry assessments.
3) **The machine must be running with sufficient slip.**
 a) The rotor asymmetry signature is adjacent to the electrical fundamental and has an amplitude that is typically orders of magnitude smaller.

 b) Sufficient separation in frequencies between the electrical fundamental and the signature frequency is required to make an assessment possible.

 Note: Applications exist where it is impossible to create insufficient separation between the fundamental and signature frequency. Examples of applications: Motors that are free spinning (mechanically uncoupled), or most MOV’s, which run at very low loads during the constant load stroke which is of too short a duration to allow sufficient separation of these frequencies.

 c) Increasing the load to the motor will increase the operating slip, moving the signature peak further from the peak of the electrical fundamental.

4) **Load level must be sufficiently constant.**
 The rotor circuit asymmetry assessment number is calculated from the amplitudes of the signature (rotor bar) frequency and the fundamental frequency currents.

 a) This sets the requirement of knowing the signature frequency, which depends upon knowledge of the operating speed.

 b) The machine’s speed changes as a function of load requirements (dampened by the system’s inertia).

 Note: A significant number of applications exist where this requirement cannot be met. Examples: Most mills, cranes, centrifugal shoots, and many applications that require a design D motor due to dynamic loading.

 c) Look at every data point’s torque ripple graph and ensure that the short-time torque ripple is sufficiently constant to conclude that the rotor bar graph’s data is valid.

 d) If the validity of the data is uncertain due to significant torque ripple, AND rotor circuit asymmetry signature is present, do the following: Look at every datapoint’s torque ripple and ascertain whether the nature of the torque ripple varies from one datapoint to the other. If this is the case AND the rotor circuit asymmetry signature remains consistent, then a rotor circuit asymmetry issue is likely.

5) **Assessment needs to not be influenced by possible natural frequencies of the motor-load system.**
 Mechanical, or electro-mechanical systems can operate such that natural frequencies near rotor circuit asymmetry signatures are excited. These excited resonant frequencies are the source of possible false positive assessments.

 Note: The nature of motor current signature analysis is different from vibration analysis in several ways. One of these differences is that vibration analysis’ information represents the local nature of the system, whereas motor current signature analysis information is more analogous to a sweep alongside the energy conveyed to the system. Any electrical or electro-mechanical feature influencing the flow of energy (e.g. setting off resonances) has the capability of attaching these frequencies to the spectra obtained through electrical measurements.

 a) If a significant rotor circuit asymmetry signature peak has been identified, verify that it is not a mechanical or electro-mechanical resonance by varying the load. A load variation will vary the machine’s speed only very slightly (hence the resonance will probably still be excited). However, the
slip will vary in proportion to the percentage load change – shifting the rotor circuit asymmetry signature significantly, while keeping the system’s natural resonant peak in the same location.

6. Speed assessment must be correct for the data point
 a) The speed must be constant through acquisition and correct in the software

 b) Verify that the machine is operating at the speed displayed by the software by reading it with other means (e.g. a strobe). If this is unrealistic, use the Trending display of Speed to verify that the speed estimates are consistent.

Torque
This domain specializes in diagnosing mechanical issues, displays transient overloading, and locates soft-foot mechanical imbalances along with bearing problems. Torque signature analysis shows far more dramatic results, giving greater confidence in finding and diagnosing problems.

As an asymmetric rotor feature enters and leaves the magnetized portion of the circuit, it modulates the ability of the rotor to generate torque. Large asymmetries can be seen in the torque graph.

This modulation may not be easily visible in the time domain if other torque-signature frequencies are of significance. If this is the case, switch to the torque spectrum where individual frequencies are separated from each other, making a diagnosis easier.

Torque: The torque time wave form shows the load stress imposed on the motor. RMS quantities are an accurate measure of the average energy contained in the instantaneously changing current or voltage signal. If only RMS quantities are monitored, it is impossible to find peak stresses in the motor’s load. Instantaneous waveform analysis monitors the time-varying or instantaneous variations in the load. Thus, the torque time waveform can identify peak pulses above the motor’s nameplate information, even if the average power delivered to the load does not exceed the nameplate data. A significant portion of a motor’s performance can consist of transient load fluctuations. Copper losses and their associated heating are proportional to the square of the currents. Thus, transient load fluctuations are just as significant as the average value of the operating torque.

The torque time waveform shows the torque propelling the load. Any transients or variations in the load component should prompt further investigation. For example, the influence of broken fan blades or worn roller bearings on a conveyor belt can be seen on the torque time waveform display.

Torque swing is the percentage of the transient torque to the steady state in percent:

$$\% \text{ torque swing} = \frac{100 \cdot (\text{Peak torque} - \text{Steady state torque})}{\text{Steady state torque}}$$
Alarms tab overview

The alarms tab is where motor specific measurement limits are set, viewing of detailed enabled alarm status, and acknowledge alarms is done.

Note: This view is a motor specific tab. It shows information for one motor at a time. The overview of all alarm status is done via the motor selection pane or the machine status grid view. At the bottom of the alarm window, there are two tabs – alarm setup and alarm status.

The alarm setup tab contains key measurements and motor limits defined for each parameter. Not all parameters need to have limits, or need to be enabled for alarming. The list of measurements available for setting alarms is shown on the left of the alarm setup tab view. For each measurement, a high and low watch, caution and warning limit as well as the alarm enable for the measurement can be set. If the alarm for the parameter is enabled, the limits will be compared to the data gathered during monitoring of the motor. If exceeded, the background color of the motor icon in the motor selection pane will change color, as will the grid box corresponding to the motor in the machine status grid view.

Alarm status can also be indeterminate, not evaluated or disabled. Indeterminate indicates an enabled alarm, but an unmeasured specific parameter. This typically occurs when an alarm is enabled on a parameter, which requires a time waveform acquisition, but a time waveform acquisition has not yet run on the motor.

Note: time waveform acquisitions occur approximately once per hour. Not Evaluated is coded a light grey color and indicates that no data is available for this motor; therefore, it is not evaluated. This typically occurs when a motor has been defined in the location tree, but has not been mapped to a NetEP channel in the location tree. A Disabled motor is set up and mapped to a NetEP channel; however, the motor is off at this time. While a motor is off, the NetEP automatically disables data collection on that motor. When the motor restarts, the NetEP will automatically begin taking data on it again. The threshold for determining if a motor is off is found in the name plate information in the motor properties screen.

The Alarm Status tab shows the status of all enabled alarms for this motor, as well as last measured values of enabled alarm parameters. A motor alarm condition is set when limits exceeded parameter levels. The alarm condition is not cleared on a subsequent measurement of this parameter within limits, rather the alarm must be acknowledged by the user before it is cleared.
Acknowledging alarms

When an alarm is triggered, it remains set until it is acknowledged regardless whether or not subsequent measurements of the motor parameter which set the alarm exceed alarm limits or not.

1) To acknowledge an alarm, navigate to the motor causing the alarm condition by double clicking on the motor in the motor selection pane, or double clicking on the icon or rectangle in the data grid view.

2) Go to the Alarm Status screen for that motor. The parameters which set the alarm status will be color coded, corresponding to the type of alarm; blue for watch level, yellow for caution level and red for warning level.

3) Clear the alarm by clicking on the Click to Acknowledge Alarm column on the color coded motor parameter.

4) A dialog box appears to clear the alarm.

5) Click yes to clear the alarm status for that motor parameter.

6) The status will change to Acknowledged and the next time this parameter is measured, the alarm status will be updated, based on the measured value.

7) If multiple parameters have exceeded alarm limits, each must be cleared individually as described above or all alarms for a motor can be cleared by clicking the Acknowledge All Alarms at the top of the Alarm Status screen.

8) **Note**: acknowledge all alarms for this motor by using the Acknowledge All Alarms button at the top of this window. This is useful in a situation where, for example, the voltage buss momentarily sagged, triggering voltage as well as current alarms.

9) If an event occurred which affected all motors connected to the NetEP, all the alarms can be cleared at the database level by right clicking on the database icon in the Motor tree, and selecting the Acknowledge all alarms item.

Alarm parameters

The motor parameters that can have alarm limits set for them are:
- Load [%]
- Load [kW]
- Power Out [kW]
- Rotor Bar Sideband [-db]
- Speed [RPM]
- Efficiency [%]
- Eff. Service Factor
- Impedance Unbalance [%]
- Za
- Za angle
- Zb
- Zb angle
- Zc
- Zc angle
- NEMA Derat.
- Input Power [kW]
- P. F. Avg

Fig 5-1: Alarm status view

Frequency [Hz]
Current Unbalance [%]
Current Level [%]
Harmonic Distortion I [%]
I Avg RMS [A]
I Peak
Total Distortion I [%]
c.f. I Avg
Voltage Unbalance [%]
VUF [%]
Voltage Level [%]
Total Distortion [%]
V avg RMS [V]
Peak Voltage [V]
Harmonic Distortion [%]
HVF
c.f. V Avg.

These parameters are on the alarm setup tab.

Each motor parameter can have six limits associated with it, low warning, low caution, low watch, high watch, high caution, high warning. To set an alarm value, type the parameter value into the appropriate cell in the alarm setup table.

Note: that for parameter limits with no alarm wanted leaves the corresponding alarm cell in the setup table blank. For example, the rotor bar sideband would most likely be blank for the low warning, low caution and low watch alarm levels. Alarm limits must be ordered correctly – the low warning level must be lower than the low caution level, and the low caution level is lower than the low watch level. Similarly, the high warning level must be higher than the high caution level which is higher than the high watch level. The high watch level must be higher than the low watch level.

After entering the parameter alarm limits for the motor, click the **Apply** button near the top of the alarm setup screen, otherwise changes will be lost. At the top of the alarm setup screen is the **Undo All Changes** button. Clicking this button to remove all edits made in the alarm setup screen and restore all entries to their previous value.

The restore defaults button will load factory pre-set values for all motor alarm parameter limits and actions. If after examining the defaults, you would prefer not to use them, click the undo all changes button to restore the previous values.

Use caution when setting Alarm Limit Values

1) If alarm limits are set too tight, many nuisance alarms could be set, requiring frequent intervention to acknowledge the alarm state.

2) Alarm data is saved. If alarm limits are set such that every reading on the motor results in an alarm condition (that is, one or more of the limits have been exceeded), the data for the alarm is stored in the database. This can quickly fill the database with the data associated with the alarms, requiring an administrator to manually clear out database entries. Having excessive amounts of data in the database can also slow the responsiveness of the interface.
Enabling alarms
Enabling an Alarm instructs the NetEP to compare the measured values of the motor parameters to the limits entered in the alarm setup screen. Check the box in the Enable column of the motor parameter. Only those motor parameters with the Enable box checked are shown on the alarm status screen.

All limit checking of motor parameters can be turned off (for this motor) by clicking the Disable Alarms button near the top of the alarm setup screen. Undo this action by clicking the Undo All Changes button.

Viewing alarm status
When an alarm level is reached, the NetEP sets an alarm for that parameter. If a watch level was reached, on the Alarm State tab, the Result, Click to Acknowledge, Last Value and Last Tested cells are all shaded based on the type of alarm limit reached; blue for a watch level, yellow for a caution level and red for a warning level. Similarly, in the motor selection pane, the motor, and any voltage buss, folders and databases above it will also be shaded with the appropriate alarm color.

To see the alarm status of all motors, click on the View menu item, choosing the Machine Status Grid. The data grid has two views, an icon per motor, or a colored rectangle per motor. The view can be changed by clicking the Toggle Views button near the top of the screen. The Machine Status Grid view provides an at a glance, single screen showing the status of all motors. A color shading scheme is used: green for all parameters within limits, blue for watch limit exceeded, yellow for caution limit exceeded and red for warning limit exceeded. Summary information for the motor can be viewed by moving the cursor over the motor icon or square representing that motor. Double clicking on the rectangle or motor icon will display the alarm status tab for that motor.
Alarms

Fig 5-3: Motor status grid – block view

Fig 5-4: Motor status grid – Motor view
The Dashboard tab shows the most recent data for motor parameters in either a summary graphical (gauge) format, or in a detailed text format. The Dashboard is useful for understanding what is going on with a motor currently. It shows complete power quality, voltage, currents, distortion, components, power, and machine performance data. However, it does not present the spectrum data. To view spectrum data, navigate to the Voltage/Current tab for Voltage/Current spectrum information, or to the torque tab for torque spectrum information.

To open the dashboard view, open a motor window (double click on the motor icon in the location or server tree) and choose the Dashboard tab at the top of the motor window.

The default view shows the Voltage RMS level, level in percent (of nameplate), harmonic distortion, and voltage unbalance on the top row. The second row shows the current RMS level, level in percent (of nameplate), peak current and current unbalance. The third row shows the voltage frequency, power factor, component avg amplitude, and input power. The last row, machine gauges, shows the motor speed, torque, load in percent of nameplate, and load in KW. The parameters shown in the gauges will update as soon as new data is available. For parameters such as voltage level and current level, this will be several times per minute. For parameters such as speed, which require a time waveform acquisition, these will update approximately once per hour.

Each gauge displays the name of the parameter being shown immediately above the gauge. The needle moves to show the value of the parameter on the gauge, and a digital display of the value is shown beneath the gauge. The needle position and the digital parameter value update each time new information is available.

The dashboard gauges can be reconfigured by right clicking on the gauge, then selecting the parameter for the gauge to display. Only 16 gauges can be displayed at one time in the window. Even though the window is divided into a power gauges and machine gauges, any motor parameter

Fig 6-1: Dashboard
can be placed in either area.
The grey bars with the title of the gauge section in it also display the time at which the displayed data was taken. Seeing that these times update periodically is an easy way to verify that the NetEP is gathering data properly.

There is no combination drop down box with time stamped results available for the dashboard. Dashboard shows the most recent data only. To select and view past data for the motor, use the trending tab.

To see a detailed textual view of the most recent motor data, select the Details tab at the bottom of the motor results window. This view is grouped by machine, power quality, power, voltage, current, distortion and components. Detailed information about each phase, as well as the average or sum is also presented in this details view of the dashboard. Like the gauges, these values update as soon as new information is available. The title for each group in this detail view includes the time at which the displayed data was taken.

Click the view phasor diagram to see the voltage and current phasors. This phasor diagram screen is a read only screen to review data only. No changes can be made here. Connection setup changes can only be done at the NetEP device using the configuration tool. The phasor diagram represents the sequence of the voltages and currents for this motor.

Note: This is a function of how the motor is wired to the grid, and also how the NetEP voltage inputs and CT inputs are connected. The phasor length represents its amplitude, and its angle position represents its phase angle relative to Va (which is defined as the reference and thus has an angle of 0). The phasor arrows are color coded to group phase voltages and currents together. Phase A is red, phase B is blue, and phase C is yellow.

A positive sequence is defined as an A B C sequence, and a negative sequence as an A C B sequence. See the NetEP data definition section for more information on understanding and using phasors and components for motor monitoring.
Note also that the components definition in the NetEP assumes a positive sequence. Thus, V1 amplitude is the positive sequence voltage component if the phasor rotation is positive. If the phasor rotation is negative, V1 amplitude represents the negative sequence voltage component.

On the phasor diagram, the view of the phasor is selectable. The four choices are:

- LN – Y zero
- LN – X zero
- LN & LL - Y zero
- LN & LL - X zero

These choices refer to line to neutral (LN) or line to line (LL) to determine phasor amplitudes, and where the Va phase (always 0) will be shown, on the Y axis (Y-zero) or on the X axis (X-zero). Thus, to see the phasors, both line to line and line to neutral with the Va phase on the X axis, choose the LN & LL X-zero option.
The voltage/current tab is where the time waveform data, spectrum and harmonics for voltages and currents can be viewed. **Note:** To view this data, a time waveform acquisition for this motor must have been acquired. By default, the NetEP performs a time waveform acquisition approximately once an hour, for every motor.

Unlike the dashboard and trending tabs which show the values of many motor parameters, the voltage/current tab shows the actual waveforms of the voltages and currents captured by the NetEP for a specific motor. This is shown as time waveforms — that is, as they would be seen on an oscilloscope, and also as a spectrum and a harmonics bar chart. The spectrum and harmonics charts are useful for detecting and diagnosing faults that show up as specific frequencies in the motor, for example, rotor bar faults.

The time waveform display is a quick way to look at the voltage and current and be sure that nothing major is wrong. For example, an entire phase has been disconnected. It’s also a quick way to verify that the motor is indeed on and drawing expected currents.

Time waveform plots

1. Select the voltage/current tab in the motor results window.

2. On the left hand side of the results window, select the voltages and currents to plot. By default, all voltages and currents are displayed. The voltages are displayed using thick lines, while currents are displayed using thin lines. The phases are color coded, phase A is red, phase B is blue and phase C is yellow.

3. Use the trigger and slope drop down boxes to control how the display at time zero is shown. For example, to see phase B current as it crosses zero amps as the starting point for the graph, select Ib in the trigger box, and falling in the slope box.

4. Select the date and time for the results to display from the drop down box.

5. To scroll through the different date time results, use the left and right arrows on the blue background next to the date time selection box.
6) The power data, voltage, current, symmetrical component data and phasor diagram are also displayed for reference here.

7) The scroll bar at the bottom of the waveform display can be used to scroll through zoomed X-axis data.

8) Help for controlling the zoom of the display is available by clicking the small ? symbol at the top of the time waveform screen.

9) Zoom: Click the mouse and drag the cursor to define the area to which to zoom in on. As the cursor is dragged, a dotted line appears showing the area that will be displayed when the mouse button is released.

10) Zoom X-axis only: Click the left mouse button and drag the cursor straight parallel to the X-axis. The dotted lines showing the new display area will shift to vertical lines showing the portion of the X-axis that will be zoomed to.

11) Zoom Y-axis only: Click the left mouse button and drag the cursor straight parallel to the Y-axis. The dotted lines showing the new display area will shift to horizontal lines showing the portion of the Y-axis that will be zoomed to.

12) Cancel zoom: with the left mouse button still depressed, hit the escape key.

13) Undo zoom: press the spacebar.

14) Reset from Zoom: Press the Control and Spacebar keys simultaneously
Spectrum Plots

1) Select the Spectrum tab from the lower left hand corner of the motor results window to view the spectrum.

2) The spectrum display shows the frequency components of a signal. Spectrum plots are useful for looking for and diagnosing motor problems that have a specific frequency associated with them. For example, rotor bar faults. As a rotor with a broken rotor bar rotates in the stator, it creates a disturbance in the currents being drawn by the motor at a specific frequency. The NetEP calculates this frequency. Using current spectrum, that particular frequency can be displayed and evaluated for a rotor bar fault. The height of the line at any frequency represents the amplitude of the signal at that frequency. Since in an electrical system, currents are carried in addition to the line frequency current, the line frequency will typically be the highest peak. However, this peak will vary with each motor type and its load. To make comparison of frequency peaks easier, spectrum plots are typically normalized to the height of the line frequency peak. This allows the comparison of other frequency amplitudes to the amplitude of the fundamental as a ratio, thus allowing comparisons between motors. For example, the amplitude of the rotor bar frequency for a motor drawing 1000 A might be 5.6 A, while a motor drawing 300 A might have the amplitude of the rotor bar frequency of only 1.6 A. Yet, relative to the line frequency amplitude, the ratio of the amplitude of the rotor bar frequency is the same, -45 dB. Spectrums can be displayed either in log or linear form. Using the log scale allows much lower signal levels to be seen. Every 20 dB in the log display represents a factor of 10 in a linear display. That is, a signal frequency that is 20 dB smaller than another signal frequency is $1/10^{20}$ the amplitude of the larger signal. Thus a signal that is 60 dB smaller (smaller signals have a minus sign on the dB value, where larger signals have a positive dB value), that is -60 dB is $1/1000^{60}$ the size of the signal it is being compared to. Note that with the NetEP, signals as small...
as -100 dB, or 1/10,000th of the fundamental amplitude are visible. Using a linear scale, a signal that was 1/10,000th just disappears as it is so small relative to the fundamental signal amplitude. For this reason, spectrum analysis and motor diagnostics using the spectrum are usually done in dB.

3) Similar to the time waveform, select the voltages or currents to display in the upper left hand corner of the motor results window. **Note:** The average voltage, current and the difference of voltage and current is available. These differences are useful in distinguishing between frequencies coming from the power source (voltage spectrum), and those frequencies resulting from the action of the machine (found in the current spectrum).

4) The Y-axis of the spectrum display can be shifted between a log and a linear scale. Check the Locked check box to keep the Y axis scale fixed. Using a log Y axis scale allows a greater dynamic range of signals to be viewed.

5) The X-axis can similarly be changed between a hertz or a KCPM scale, and can likewise be locked via the Locked check box.

6) The window, averages, frequency resolution and maximum frequency (FMAX) are all read only values displayed here for reference only.

7) The graph can be normalized in a number of ways, the system determined fundamental frequency, the highest amplitude frequency, or by manually entering the frequency whose amplitude the graph will be normalized to. In most cases, using the system determined fundamental frequency will yield the best results.

8) Redrawing of the spectrum can be done automatically as changes are made (to scales or components to plot) if the automatically redraw checkbox is selected, or via the redraw graph button if the checkbox is not selected.

Markers

1) To assist in identifying frequencies of interest in a spectrum display, markers are available. In the lower portion of the plots area, click on the markers tab.

2) Select the frequency to mark in the spectrum using the check boxes at the top of the marker area. Multiple frequencies of interest can be marked at the same time. This list consists of the NetEP generated rotor bar, fundamental and speed frequencies, along with the bearing frequencies defined in the motor properties/machine parts dialog.

3) The marker on the spectrum plot is labeled with the frequency name, and the frequency that is marked. The color of the markers associated with a frequency can be changed by clicking on the marker color box (the box is filled with the present color selected for that marker), and then selecting a new color from the pop up palette of colors.
Fig 7-3: Voltage/current markers

Harmonics of the frequency of interest can be displayed by selecting the number of harmonics to display in the harmonics range: to box.
Harmonics

1) Select the harmonics tab from the lower left hand corner of the motor results window to view the spectrum harmonics.

2) Select the date and time for the results to display from the drop down box.

3) To scroll through the different date time results, use the left and right arrows on the blue background next to the date time selection box.

4) The harmonics display shows the harmonics of the system determined fundamental frequency for the voltage and current components selected.

5) For reference, harmonic distortion, total distortion and the harmonic voltage factor and harmonic power factor are displayed.

6) Harmonics (distortion) measurements quantify how different a signal is compared to a perfect sine wave. AC rotating machinery works best when powered by a pure sine wave. Any power that is delivered to a motor that is not a sine wave does not do any work and ends up as heat. Therefore, the lower the levels of distortion the better.

7) Distortion can arise from several different sources. For example, upstream transformers can be saturating and warping the sine wave. VFD’s can impress all types of noise on a voltage bus.

8) Total distortion (Td) is a ratio of the amount of a signal that is not in the fundamental frequency to the fundamental signal (either 50 Hz or 60 Hz). Therefore, the Td is a ratio of everything but the fundamental to the fundamental.
9) Total harmonic distortion (THD) is a ratio of the harmonics of the fundamental to the fundamental itself. Harmonics of 60 Hz are 120 Hz, 180 Hz, 240 Hz, etc. THD is very different from total distortion (Td), because Td will sum up all the frequencies in a signal and compare the sum to the fundamental, while the THD will just sum up the harmonic frequencies and compare the sum to the fundamental.

Fig 7-5: Voltage/current harmonics
The torque tab in the motor results screen is where both torque versus time and torque spectrum data is found. Navigate to the torque screen by double clicking on the motor of interest in the motor selection pane, then selecting the torque tab in the motor results screen.

To view torque data, a time waveform acquisition must have run on the motor.

Unlike the voltage/current view, the torque delivered by the motor is generally not dominated by the line frequency component. This simplifies the analysis of the motor performance, since the frequencies of interest are not modulated with the line frequency, and their amplitudes are generally higher than in the voltage/current view.

See the chapter on NetEP data definitions and use for more information about how to use the torque data.

Torque time waveform (torque vs time)

1) Select the date and time for the results to display from the drop down box.

2) To scroll through the different date time results, use the left and right arrows on the blue background next to the date time selection box.

3) For reference, the nameplate rated torque is also drawn on the graph.

4) Like the voltage/current time waveform display, the torque time waveform can be zoomed and scrolled.

5) Zoom: Click the mouse and drag the cursor to define the area to which to zoom in on. As you drag the cursor, a dotted line appears showing the area that will be displayed when the mouse button is released.

6) Zoom X-axis only: Click the left mouse button and drag the cursor straight parallel to the X-axis. The dotted lines showing the new display area will shift to vertical lines showing the portion of the X-axis that will be zoomed to.

7) Zoom Y-axis only: Click the left mouse button and drag the cursor straight parallel to the Y-axis. The dotted lines showing the new display area will shift to horizontal lines showing the portion of the Y-axis that will be zoomed to.

8) Cancel zoom: with the left mouse button still depressed, hit the escape key.

9) Undo zoom: press the spacebar.

10) Reset from zoom: Press the control and spacebar keys simultaneously.

11) The delta cursor displays the difference in time between the two cursor locations and the amplitude of the delta cursor. Both cursors can be dragged and dropped to other locations on the waveform.
Torque Spectrum

1) Like the voltage/current spectrum, the torque spectrum shows all the frequencies that make up the torque delivered by the motor. Having each frequency visible in a spectrum plot allows quick identification of frequencies that may show a motor/machine problem. The height of the line at any frequency represents the amplitude of the signal at that frequency. Spectrums can be displayed either in log or linear form. Using the log scale allows much lower signal levels to be seen. Every 20 dB in the log display represents a factor of 10 in a linear display. That is, a signal frequency that is 20 dB smaller than another signal frequency is \(\frac{1}{10} \) the amplitude of the larger signal. Thus a signal that is 60 dB smaller (smaller signals have a minus sign on the dB value, where larger signals have a positive dB value), that is -60 dB is \(\frac{1}{1000} \) the size of the signal it is being compared to. Note that with the NetEP, signals as small as -100 dB, or \(\frac{1}{10,000} \) of the fundamental amplitude are visible. Using a linear scale, a signal that was \(\frac{1}{10,000} \) just disappears as it is so small relative to the fundamental signal amplitude. For this reason, spectrum analysis and motor diagnostics using the spectrum are usually done in dB.

2) At the lower left corner of the motor results window, select the spectrum tab.

3) The Y-axis of the spectrum display can be shifted between a log and a linear scale. Check the locked check box to keep the Y-axis scale fixed. Using a log Y-axis scale allows a greater dynamic range of signals to be viewed.

4) The X-axis can similarly be changed between a hertz or a KCPM scale, and can likewise be locked via the locked check box.
5) The window, averages, frequency resolution and maximum frequency (FMAX) are all read only values displayed here for reference only. These values were set as part of the scheduled time waveform acquisition in the scheduler tab for this motor.

6) The graph can be normalized in a number of ways, the system determined fundamental frequency, the highest amplitude frequency, or by manually entering the frequency whose amplitude the graph will be normalized to. In most cases, using the system determined fundamental frequency will yield the best results.

7) Redrawing of the spectrum can be done automatically as changes are made (to scales or components to plot) if the automatically redraw checkbox is selected, or via the redraw graph button if the checkbox is not selected.

Markers

1) To assist in identifying frequencies of interest in a spectrum display, markers are available. In the lower portion of the plots area, click on the markers tab.

2) Select the frequency to mark in the spectrum using the check boxes at the top of the marker area. Multiple frequencies of interest can be marked at the same time. This list consists of the NetEP generated rotor bar, and speed frequencies, along with the bearing frequencies defined in the motor properties/machine parts dialog.

3) The marker on the spectrum plot is labeled with the frequency name, and the frequency that is marked. The color of the markers associated with a frequency can be changed by clicking on the marker color box (the box is filled with the present color selected for that marker), and then selecting a new color from the pop up palette of colors.
Trending is where the motor’s parameters are examined and how these parameters change over time. This can be useful for identifying early warning signs of trouble, before a motor failure occurs. The trending display also shows how motors perform over the course of a day, or other time period.

The trending tab provides both a graphical view of the data, as well as a grid view of actual values over time. This data can be exported in a CSV format for additional analysis or graphing.

To get to the trending screen, double click the motor to examine in the location pane, then click the trending tab at the top of the page. On the trending screen, in the lower left hand corner, either select the grid or graph view.

Grid View

1) Allows the simultaneous viewing of multiple parameters over time.

2) Displays data in a textual, grid format.

3) Double click the parameter name at the top of each column to sort the entire table by that column. An arrow appears indicating if the column is sorted in ascending or descending order. To change from ascending to descending or vise versa, click the column name again.

![Fig 9-1: Grid view](image-url)
4) To the left, the select data area is where the parameters are selected. Parameters are grouped for easier navigation. By checking the group name, all the parameters in that group are selected and displayed. In the example above, all the current data is selected for viewing.

5) Beneath the parameter selection area, is a time selection area. This allows the selection of data only from certain periods. This can be either a specific date and time – using the from/to dates or a time window. The time window shows the most recent data in the window selected. In the example above, the period from 4/20 at 12:08 PM to 4/20 at 4:08 PM is displayed.

6) Note that each parameter result has a time stamp associated with it. This makes it easier to investigate events at specific times.

7) To update the grid with data gathered since the trending window was initially opened, click the refresh grid button in the center of the select data pane.

8) Data from the grid view may be exported in a CSV format by right clicking in the grid area. Enter a filename and location to save the CSV file.

Graph view

1) Use the graph view to see a plot of a parameter's value over time.

2) To the left, the plots area is where the parameters you want to see are selected. Parameters are grouped for easier navigation. Only one parameter can be selected for viewing at a time. To select a parameter, double click it.

3) Beneath the parameter selection area, is a time selection area. This allows the selecting of data only from certain periods. This can be either a specific date and time – using the from/to dates or a time window. The time window shows the most recent data in the window selected. In the example below, data from April 20 at 12:08 PM to April 20 at 4:08 PM is displayed.

4) To change the parameter graphed, simply double click on the parameter name in the plots parameter pane.

5) To update a time window graph, double click on the parameter name again.

6) To change the period displayed, enter new values into the from and to date and time fields. When done, click the refresh button at the far left of the trending tool bar.

7) To see a moving window, over time, select the use time window box. This display always has now at the end of the X-axis. The data will literally scroll across the display, showing a display similar to a strip chart for the parameter selected. This is particularly useful for monitoring values, which may be changing frequently or periodically.

8) Trending graphs can be shown with lines connecting the actual data points, or as individual points. Use the line or point pull down to select how the graph will plot. Point view is useful to understand if a transient event (for example a current spike) was a sustained or single event. Using the point view, with one dot per data point
acquired, it is very easy to tell if the event was present for multiple readings or just a single reading.

9) The trending graph does not support zooming capability when in the use time window mode. The trending graph does support the zoom capabilities when in the use dates mode.

Multiple Windows

1) Like all other NetEP windows, the trending windows can be minimized to display multiple windows, and therefore multiple motors or multiple parameter graphs, at the same time. To do this, click the restore down button in the upper right hand corner of the trending window.

2) This makes the window smaller than the entire results screen area.

3) Select another motor and parameter to trend, and set up the trending time period. Click the restore down button on this window.

4) On the NetEP toolbar, click the window menu item, and select tile horizontal to line up the trending windows beneath each other.

5) To see more data, the parameter selection pane can be hidden by clicking on the pin icon in the upper right hand corner of the parameter selection pane. To get the panel back, click on the select data box, then click the pin icon to keep the select data area displayed. An example multiple window trending display is shown below.
Appendix A

Installing MS SQL Server or MS SQL Express 2005, 2008
(reference only)

Installing SQL Server or SQL Express 2005

Either Microsoft SQL Server 2005 or Microsoft SQL Express 2005 is required for the NetEP or iNetEP server software to operate correctly. Purchase SQL Server from Microsoft, or download SQL Express from Microsoft. While SQL Express costs less than SQL Server, it is limited to a 4GB database size.

Note: This installation process is for reference only. When possible, use the most current Microsoft installation process. The installation process may vary depending on version.

1) On the End User License Agreement window, read the license agreement, and then select the check box to accept the licensing terms and conditions. Accepting the license agreement activates the Next button. To continue select Next.

 Fig A-1: Microsoft SQL Server installing prerequisites

2) The system will then verify the necessary components required for install. To begin

 the component install process select Install.

3) After all prerequisite installs are complete, select Next.

4) On the welcome page of the installation wizard, select Next to proceed.
5) The System Configuration Check scans the installation computer for conditions that may interfere with setup. (If there are problems, select Cancel, resolve the problems and start again.)

7) To proceed with setup when the scan completes, select Continue.
8) On the Registration Information window, enter name and company name within the text boxes. To continue select Next.
9) On the Components to Install window, accept the default components installation configuration by selecting Next.
10) On the Instance Name window, select the radio button for Default instance. To continue, select Next.
11) On the Service account window, select Next.
12) On the Authentication Mode window, select Mixed Mode (as shown in Fig 3-4), and enter a password for the sa (system administrator) account.

Note: REMEMBER THIS PASSWORD!
13) After the password has been acknowledged, select **Next** to proceed.

14) On the Collation Settings window, select **Next**.
15) Accept the default Report Server Installation Options by selecting **Next**.
16) On the Error and Usage Report Settings window, select **Next**.
17) On the Ready to Install page, review the summary of features and components. To proceed, select **Install**. Once installed, select **Next**.
18) On the Setup Progress page, monitor installation progress. When complete, select **Next**. (This may take several minutes.)
19) On the Completing Setup Installation Wizard page, select **Finish**.

Configuring SQL to allow remote connections

1) Go to Start – Programs – Microsoft Sql Server – Configuration Tools.

2) Launch the SQL Server Surface area configuration tool.
3) On the SQL Server Surface area configuration window, select **Surface Area Configuration for Service and Connections**.
4) Within the tree below the Database Engine, select **Remote Connections** as shown.
5) Enable the radio buttons for:
 - Local and Remote Connections
 - Using both TCP/IP and named pipes
6) To proceed, select **Apply**.
7) Restart the Database Engine Service and the SQL Server Browser.

Restart Database Engine Server and SQL Service Browser

1) Go to Start – Programs-Microsoft SQL Server – Configuration Tools.
2) Launch the SQL Server Surface area configuration tool.
3) On the SQL Server Surface area configuration window, select **Surface Area Configuration for Service and Connections**.
4) Disable service by selecting **Stop**.
5) From the Startup Type drop down box, select **Automatic**.
6) Selecting **Apply** will activate the Start button. To proceed, select **Start**.

![Surface Area Configuration for Services and Connections](image)

Installing SQL Server or SQL Express 2005

Installing SQL Express 2008

1) Download and run the Sql Express 2008 installer.
2) Click installation on the left side of the wizard.

![SQL Server Installation Center](image)
3) Click new SQL Server stand-alone installation or add features to an existing installation. Click OK.

4) On the setup support rules page, click Next (the windows firewall warning is ok).

5) The product key screen is all grayed out with the specify free edition selected. Click next.

6) Read the license agreement and if you agree to the terms place a check in the checkbox, and click next

7) Other components my be required in order to run the installer. Click install to install these components.

8) Another rules wizard will determine if there are any problems in running the SQL setup files. Correct any failures and click next to continue.

9) Place a check next to Database engine Services, Management Tools - Basic, and any other features you would like install with your server and click next.

10) On the instance configuration, enter the instance name you would like to call your server, and the root directory. The instance name is used to connect to your server.
11) Click next on the disk space requirements screen.

12) On the Server Configuration dialog select NT AUTHORITY\NETWORK SERVICE for SQL server database engine and click next.
13) On Database Configuration select “Mixed Mode” and enter a password for the system administrator (sa) account. Remember this password you will need it to access your server. Click Add Current User to create a Windows Administrator account.

![Database Engine Configuration](image)

Fig A-11: Database engineer configuration

14) Click next on error usage and reporting.

15) Click next on Installation rules page if your system passed.

16) Verify that items listed to be installed are the items you want and click Install.

17) The installation process will begin. When it is complete verify that it installed correctly and click next.

18) Click close to exit the installation wizard.

Configuring SQL Server to Allow Remote Connection (XP)

1) Go to Start->Program->Microsoft SQL Server 2008->Configuration Tools and launch SQL server configuration manager.

2) In the tree on the left pane click the plus next to SQL server network configuration, then select protocols for SQLEXPRESS2008 where SQLEXPRESS2008 is the instance name specified of the database engine during installation.

3) In the right pane right click on TCP/IP and then select enable.

4) Click ok on the message informing that there is a need to restart the services.

5) In the left pane select SQL server services.

6) In the right pane select SQL server right click and go to restart.
Configuring Windows firewall to allow remote connection (Windows XP x 86)

1) Right click on my network places and go to properties.

2) Right click on your network connection and go to properties.

3) Select the advanced tab.

4) Click the settings button to modify Windows firewall.

5) Click on the exceptions tab.

6) Click on the add program button.

7) Click on the browse button and browse to the SQL server installation folder (C:\Program Files\Microsoft SQL Server)\MSSQL10.SQLEXPRESS\MSSQL\Binn) and select sqlservr.exe. then click open.
Technical specifications and capabilities

- Continuously monitor 108 parameters on up to 32 motors on up to 7 voltage busses
- Peak, RMS, THD, TD, CF, unbalance, imbalance, power factor, input power and symmetrical components for each V, I phase, and in total.

Time Waveform acquisitions
- Spectrum acquisition (3 phases, voltage and current)
- Rotor bar sideband amplitude
- Time waveform acquisition
- Torque Time Waveform, torque spectrum, torque swing
- Speed
- Power out
- % Load
- % efficiency
- Effective Service Factor

Identify preventative maintenance opportunities
- Set alarms for parameter limits
- Display trends for parameters

Surveyor capabilities
- At a glance status for all machines connected to all NetEP, iNetEP
- Dashboard showing 105 measurements
- Time waveforms
- Voltage, Current, Torque Spectrums with frequency markers, harmonics, sidebands
- Torque time waveform
- Trending
- Add, delete, modify machines, alarms, voltage busses

Specifications

<table>
<thead>
<tr>
<th></th>
<th>110 V – 240 V, 50/60 Hz, 2.0 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Power</td>
<td></td>
</tr>
<tr>
<td>Current Transformers (CT)</td>
<td>5 A – 2000 A, up to 150 ft CT signal runs on Cat V cable, 18 K Hz signal acquisition</td>
</tr>
<tr>
<td>Voltage Busses</td>
<td>Up to 7 different voltage busses, up to 1000 V direct input or PT's, line-to-line, line-to-neutral, external disconnect required.</td>
</tr>
</tbody>
</table>
Technical specifications

NetEP technical specifications

Environmental
- Size: 27.6 in x 19.7 in x 8.3 in
- Weight: NetEP: 56 lbs
- Enclosure: IP52, NEMA 12 (With Feedthru Plate Hole Plugs Installed)
- Operating Temperature: 0 °C to +50 °C Ambient
- Maximum Relative Humidity: 80% non-condensing
- Pollution Degree II

Standard Compliance
- Safety: UL 61010-1, EN 61010-1
- EMC: EN 61000-3/-2-3, EN 61000-4/-2-3-4-5-6-8-11, EN 61000-6/-2-4

NetEP Device Computer
- 1.0GHz Celeron or 1.4GHz Pentium EPIC SBC or Equivalent
- Memory: 2GB or Better
- Compact Flash: 4GB or Better

External Interfaces
- Ethernet RJ45, Video, USB

Ethernet Communication
- 10M/100M BaseT

NetEP Device Data Storage
- Storage Time Without Network Connection: Greater Than 1 Day - Typical (Depends on number of motors Scheduled)

Desktop Computer Requirements (Computer not provided by Baker/SKF)
- 5 GB Free Disc Space
- Windows XP, Vista or 7
- 1 GHz Pentium Processor
- 256 Color Display
- 2 GB RAM
- 15” Display or Larger Recommended
- 10/100 LAN Connection

Server Requirements (Computer not provided by Baker/SKF)
- 2 GHz Pentium, Core2 Duo or Equivalent
- 2 GB RAM
- 10 GB Free Disc Space per NetEP Connected
- Windows XP, Vista, 7 or Server 2003
- 10/100 LAN Connection
- Microsoft SQL or SQL Express
- Static IP Address
- UPS Recommended

Voltage Bus Inputs
- 7 Three-Phase Voltage Bus Inputs
- 1000 VAC Maximum
- Measurement Category III
- Input Impedance: 2 MQ per phase
Technical specifications

- Amplitude Accuracy at 50/60Hz: ± 2% After Calibration
- Amplitude Resolution: 170mV
- Phase Accuracy at 50/60Hz: 0.4° Dwell, 1.0° Round-Robin
- External Disconnect Required

Current Transformer Inputs
- 32 Three-Phase AC Induction Machine CT Inputs (Voltage Output CTs)
- CT Options: 5A, 50A, 200A, 600A (Both Solid and Split-Core)
- Amplitude Accuracy at 50/60Hz: 2% (>1.0 A current level) after calibration

Phase Accuracy at 50/60Hz:
- 5A Solid Core CT: < 4° Variation from 10% to 100% Rated Current After Calibration - Typical
- 50A Solid Core CT: < 2° Variation from 10% to 100% Rated Current After Calibration - Typical
- 200A Solid Core CT: < 2° Variation from 10% to 100% Rated Current After Calibration - Typical
- 5A Split Core CT: < 2° Variation from 10% to 100% Rated Current After Calibration - Typical
- 50A Split Core CT: < 2° Variation from 10% to 100% Rated Current After Calibration - Typical
- 200A Split Core CT: < 2° Variation from 10% to 100% Rated Current After Calibration - Typical
- 600A Split Core CT: < 3.5° Variation from 10% to 60% of Rated Current After Calibration - Typical

Frequency Response: 50Hz – 4000 Hz - Typical

Analog Measurement
- 16-bit ADC resolution
- 400 kS/s Aggregate Sampling Rate Maximum
- Frequency Range: DC to 6kHz

Calibration
- Recommended Interval: 12 Months
- Portable Calibration CTs Available

Analysis
- Time Waveforms
- Voltage, Current and Torque Spectra:
- Fmax to 6000Hz. Acquisition times from 30 to 120 seconds. Lines of resolution from 300 to 2.16M. Frequency resolution from 0.004Hz to 0.033Hz.
- Voltage Level - Per Phase and Average
- Voltage Phase Angle - Per Phase
- Voltage Unbalance
- Voltage Distortion
- Current Level, including Peak, and Phase Angle
- Current Phase Angle - Per Phase
- Current Unbalance
- Symmetrical Components
- Impedance Level and Angle
- Harmonics – Up to 100th
- Power - Real, Reactive and Apparent, Per Phase and Sum
- Power Factor - Displacement and Harmonic, Per Phase and Average
- Crest Factor - Voltage and Current, Per Phase and Average
- Fundamental Frequency
- Speed
- Efficiency*
- Torque - Instantaneous and Average (IEEE 1255-2000)*
- HP/kW*
Technical specifications

- Percent Load*
- Effective service factor
- Rotor bar assessment

Features
- Round-robin
- Six alarm levels per parameter, up to 38 parameters per motor alarmed
- Data buffering in flash or hard drive when communication link is down: one day - typical
- Self-test capability

* Line-to-Line Stator Resistance (Hot) Required for Best Accuracy

Note: Information, specifications or capabilities published in this user manual are subject to change without notice.